Abstract
Motivated by questions in location planning, we show for a set of colored point sites in the plane how to compute the smallest—by perimeter or area—axis-parallel rectangle and the narrowest strip enclosing at least one site of each color.
The Spanish authors acknowledge partial support from Acción integrada HA1999-0094, MEC-DGES-SEUID PB98-0933, and Gen. Cat. 1999SGR000356, while the German team was supported by DAAD grant 314-AI-e-dr.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
P. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl. Euclidean minimum spanning trees and bichromatic closest pairs. Discrete Comput. Geom., 6(5):407–422, 1991.
A. Aggarwal, H. Imai, N. Katoh, and S. Suri. Finding k points with minimum diameter and related problems. J. Algorithms, 12:38–56, 1991.
A. Datta, H.-P. Lenhof, C. Schwarz, and M. Smid. Static and dynamic algorithms for k-point clustering problems. J. Algorithms, 19:474–503, 1995.
D. P. Dobkin, R. L. Drysdale, III, and L. J. Guibas. Finding smallest polygons. In F. P. Preparata, editor, Computational Geometry, volume 1 of Adv. Comput. Res., pages 181–214. JAI Press, Greenwich, Conn., 1983.
A. Efrat, M. Sharir, and A. Ziv. Computing the smallest k-enclosing circle and related problems. Comput. Geom. Theory Appl., 4:119–136, 1994.
D. Eppstein and J. Erickson. Iterated nearest neighbors and finding minimal polytopes. Discrete Comput. Geom., 11:321–350, 1994.
D. Eppstein, M. H. Overmars, G. Rote, and G. Woeginger. Finding minimum area k-gons. Discrete Comput. Geom., 7:45–58, 1992.
J. Erickson and R. Seidel. Better lower bounds on detecting affine and spherical degeneracies. Discrete Comput. Geom., 13:41–57, 1995.
A. Gajentaan and M. H. Overmars. On a class of O(n 2 ) problems in computational geometry. Comput. Geom. Theory Appl., 5:165–185, 1995.
T. Graf and K. Hinrichs. Algorithms for proximity problems on colored point sets. In Proc. 5th Canad. Conf. Comput. Geom., pages 420–425, 1993.
D. P. Huttenlocher, K. Kedem, and M. Sharir. The upper envelope of Voronoi surfaces and its applications. Discrete Comput. Geom., 9:267–291, 1993.
J. Matousek. On geometric optimization with few violated constraints. In Proc. 10th Annu. ACM Sympos. Comput. Geom., pages 312–321, 1994.
J. Matousek. On enclosing k points by a circle. Inform. Process. Lett., 53:217–221, 1995.
J. S. B. Mitchell. Geometric shortest paths and network optimization. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 633–701. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.
D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. Chromatic nearest neighbour searching: a query sensitive approach. Comput. Geom. Theory Appl., 17:97–119, 2000.
M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. J. Comput. Syst. Sci., 23:166–204, 1981.
F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York, NY, 1985.
M. Segal and K. Kedem. Enclosing k points in the smallest axis parallel rectangle. Inform. Process. Lett., 65:95–99, 1998.
M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, New York, 1995.
M. Smid. Finding k points with a smallest enclosing square. Report MPI-I-92-152, Max-Planck-Institut Inform., Saarbrücken, Germany, 1992.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Abellanas, M. et al. (2001). Smallest Color-Spanning Objects. In: auf der Heide, F.M. (eds) Algorithms — ESA 2001. ESA 2001. Lecture Notes in Computer Science, vol 2161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44676-1_23
Download citation
DOI: https://doi.org/10.1007/3-540-44676-1_23
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42493-2
Online ISBN: 978-3-540-44676-7
eBook Packages: Springer Book Archive