
Buying a Constant Competitive Ratio for Paging

János Csirik1, Csanád Imreh1?, John Noga2??, Steve S. Seiden3? ? ?, and
Gerhard J. Woeginger2??

1 University of Szeged, Department of Computer Science, Árpád tér 2, H-6720
Szeged, Hungary. {csirik,cimreh}@inf.u-szeged.hu

2 Institut für Mathematik, Technische Universität Graz, Steyrergasse 30, A-8010
Graz, Austria. {noga,gwoegi}@opt.math.tu-graz.ac.at

3 Department of Computer Science, 298 Coates Hall, Louisiana State University,
Baton Rouge, LA 70803, USA. sseiden@acm.org

Abstract. We consider a variant of the online paging problem where
the online algorithm may buy additional cache slots at a certain cost.
The overall cost incurred equals the total cost for the cache plus the
number of page faults. This problem and our results are a generalization
of both, the classical paging problem and the ski rental problem.
We derive the following three tight results: (1) For the case where the
cache cost depends linearly on the cache size, we give a λ-competitive
online algorithm where λ ≈ 3.14619 is a solution of λ = 2 + ln λ. This
competitive ratio λ is best possible. (2) For the case where the cache cost
grows like a polynomial of degree d in the cache size, we give an online
algorithm whose competitive ratio behaves like d/ ln d + o(d/ ln d). No
online algorithm can reach a competitive ratio better than d/ ln d. (3)
We exactly characterize the class of cache cost functions for which there
exist online algorithms with finite competitive ratios.

1 Introduction

The classical problem. The paging problem considers a two level memory system
where the first level (the cache) can hold k pages, and where the second level
(the slow memory) can store n pages. The n pages (n � k) in slow memory rep-
resent virtual memory pages. A paging algorithm is confronted with a sequence
of requests to virtual memory pages. If the page requested is in the cache (a page
hit), no cost is incurred; but if the page is not in the cache (a page fault), then
the algorithm must bring it into the cache at unit cost. Moreover, the algorithm
must decide which of the k pages currently in cache to evict in order to make
room for the newly requested page.

The paging problem has inspired several decades of theoretical and applied
research and has now become a classical problem in computer science. This is
? Supported by the Hungarian National Foundation for Scientific Research, Grant

T030074
?? Supported by the START program Y43-MAT of the Austrian Ministry of Science.

? ? ? Supported by the Research Competitiveness Subprogram of the Louisiana Board of
Regents.

F. Meyer auf der Heide (Ed.): ESA 2001, LNCS 2161, pp. 98–108, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Buying a Constant Competitive Ratio for Paging 99

due to the fact that managing a two level store of memory has long been, and
continues to be, a fundamentally important problem in computing systems. The
paging problem has also been one of the cornerstones in the development of the
area of online algorithms. Starting with the seminal work of Sleator & Tarjan [7]
which initiated the recent interest in the competitive analysis of online algo-
rithms, the paging problem has motivated the development of many important
innovations in this area.

In the offline version of the paging problem the request sequence is a pri-
ori known to the algorithm. Belady [1] gives a polynomial time optimal offline
algorithm for paging. In the online version of the paging problem each request
must be served without any knowledge of future requests. An online algorithm
is R-competitive if on all possible request sequences the ratio of the algorithm’s
cost to the optimal offline cost is bounded by the constant R. The competitive
ratio of an online paging algorithm is the smallest such constant R. Sleator &
Tarjan [7] show that for cache size k, the online algorithm LRU (which always
evicts the least recently used page) has a competitive ratio of k and that no
better ratio is possible. In fact, they prove the following more general result that
we will use many times in this paper.

Proposition 1. (Sleator & Tarjan [7])
If LRU with cache size k is compared against an optimal offline algorithm with
cache size `, then LRU has a competitive ratio of k/(k − ` + 1).

No better competitive ratio is possible: For every online algorithm A with
cache size k, there exist arbitrarily long request sequences σ such that A faults
on every page of σ whereas the optimal offline algorithm with cache size ` only
faults on a fraction (k − ` + 1)/k of σ. ut
For more information on online paging we refer the reader to the survey chapter
of Irani [5] and to the book of Borodin & El Yaniv [2].

The problem considered in this paper. In all previous work on online paging
a basic assumption was that the cache size k is fixed a priori and cannot be
changed. In this paper, we consider the situation where at any moment in time
the algorithm may increase its cache size by purchasing additional cache slots.
If its final cache size is x, then it is charged a cost c(x) for it. Here c : IIN →
IR+ is a non-decreasing, non-negative cost function that is a priori known to
the algorithm. An equivalent way of stating this problem is the following: The
algorithm starts with no cache. At each request, the algorithm may increase its
cache from its current size x1 to a larger size x2 at a cost of c(x2) − c(x1).

We have three basic motivations for looking at this problem. First, and most
importantly, the classical online analysis of paging is criticized for being overly
pessimistic. For instance, LRU (and all other deterministic algorithms) cannot
have a competitive ratio smaller than the size of the cache, which can be arbitrar-
ily large. However, in practice LRU typically performs within a small constant
ratio of optimal for all cache sizes. For any particular instance of our problem any
algorithm will either have a constant competitive ratio or not be competitive.
Second, we see this version as a first approximation to the problem of deciding

100 J. Csirik et al.

when and how to upgrade memory systems. Though our version ignores many
practical concerns, it incorporates enough to illustrate ideas like amortizing cost
over time and balancing cost against performance. Third, we can model a system
where a portion of memory is reserved for the use of one high priority process
(or set of processes) and balance the faults incurred by this process against the
decreasing system performance for all other processes.

The offline version of this problem is quite easy to solve: For a given cost
function c(k) and a given request sequence σ, there are only a polynomial number
of possible optimal cache sizes (from 0 to the length of the request sequence). All
of them can be checked in polynomial time by computing the cost of Belady’s
algorithm [1] on the sequence σ with this cache size, and by adding the cache
cost to the result. The best such solution yields the global optimum. Note that
for many special cost functions c(k) (e.g., convex functions) there are even faster
offline methods for finding the optimal cache size.

Now let us turn to the online version of this problem. If the function c(x)
has the form c(x) = 0 for x ≤ k and c(x) = ∞ for x > k, then we are back at
classical paging with cache size k. Moreover, our problem captures some features
of classical renting-versus-buying problems (the most simple instance of which
is the well known ski rental problem (see Karlin, Manasse, McGeoch & Owicki
[6])). Imreh & Noga [4] analyze machine scheduling problems where the online
algorithm may adjust its resources at an additional cost.

Notation. For a fixed algorithm A and a given request sequence σ, we denote
by faultA(σ) the number of page faults that A incurs on σ, and we denote by
cacheA(σ) the cost c(x) where x is the final cache size of A on σ. Moreover,
we define costA(σ) = faultA(σ) + cacheA(σ). An online algorithm A is called
R-competitive if there is a fixed constant b such that for all request sequences σ
we have

costA(σ) ≤ R · costOPT (σ) + b. (1)

The smallest R for which an online algorithm is R-competitive is its competitive
ratio. The optimal offline algorithm will be denoted by OPT.

Organization of the paper. In Section 2 we summarize and explain our three main
results. The proof of the result on linear cost functions can be found in Sections 3
(proof of the positive result) and 4 (proof of the negative result), respectively. The
results on polynomial cost functions are proved in Section 5. The characterization
of cost functions that allow finite competitive online algorithms is proved in
Section 6. Finally, we end with a short conclusion in Section 7.

2 Our Results

We start by discussing several ‘natural’ cost functions c(x). In the simplest case
the cost of the cache is proportional to its size and each cache slot costs much
more than a single page fault.

Buying a Constant Competitive Ratio for Paging 101

Theorem 1. Assume that the cache cost is c(x) = αx where α is some positive
real. Let λ ≈ 3.14619 be the largest real solution of

λ = 2 + lnλ. (2)

Then there exists an online algorithm for the cache purchase problem with com-
petitive ratio λ. For any r < λ there exists an α such that no online algorithm
can be r-competitive.

The equation (2) has two real solutions, where the smaller one is approximately
0.15859 and where the larger one is λ ≈ 3.14619. For users of MAPLE we remark
that λ = −W (−e−2) where W (·) is the well known Lambert W function [3].

We also note that in the (easier, but somewhat unreasonable) case where
cache slots are not much more expensive than a single fault (i.e., where α is close
to 1), an online algorithm can be (1 + α)-competitive by simply purchasing a
cache location for each new item requested and never evicting any item. Besides
linear cost functions, another fairly natural special case considers polynomial
cost functions.

Theorem 2. Assume that the cache cost is c(x) = xd with d ≥ 2. Then there
exists an online algorithm for the cache purchase problem whose competitive
ratio grows like d/ ln d + o(d/ ln d). Moreover, no online algorithm can reach a
competitive ratio that is better than d/ ln d.

Finally, we will exactly characterize the class of cost functions c for which
there exist online algorithms with finite competitive ratios.

Theorem 3. There exists an online algorithm with finite competitive ratio for
online paging with cache purchasing cost c(x) if and only if

∃q > 1 ∃p > 0 ∃s ≥ 0 ∃X > 0 ∀x ≥ X : c(qx) ≤ p · c(x) + s. (3)

One way to interpret the condition described above is that the cost function
c(x) must be polynomially bounded.

3 The Positive Result for Linear Cost Functions

In this section we prove the positive result claimed in Theorem 1 for linear cost
functions of the form c(x) = αx with α > 0. We consider the online algorithm
BETA that uses LRU as its paging strategy, and that increases its cache size to
` as soon as faultBETA ≥ αβ(` − 1) holds. Here the critical parameter β equals
1/ lnλ where λ was defined in equation (2). Then β ≈ 0.872455, and it can be
checked that β is the unique positive root of 2 + 1/β = e1/β .

Lemma 1. If λ is defined as in (2) and β = 1/ lnλ, then any real y ≥ 0 satisfies
the inequality

(β + 1)y ≤ λ(1 + βy − β − β ln y).

102 J. Csirik et al.

Proof. First note that by the definition of β we have ln(βλ
βλ−β−1) = 1/β. Next

we will apply the well known inequality z + 1 ≤ ez for real numbers z. Setting
z

.= y · βλ−β−1
βλ − 1 in this inequality, taking logarithms, and applying some

algebra yields

ln y ≤ ln
(

βλ

βλ − β − 1

)
+ y · βλ − β − 1

βλ
− 1 =

1
β

+ y · βλ − β − 1
βλ

− 1.

It is easily verified that this inequality leads to the claimed inequality. ut

Now consider an arbitrary request sequence σ. Let k denote the final cache
size of BETA when fed with σ, and let ` denote the optimal offline cache size for
σ. We denote by fi the total number of page faults that BETA incurs up to the
moment when it purchases the ith cache slot. Then between buying the (i+1)th
and the ith slot, BETA has fi+1 − fi = αβ faults.

Lemma 2. For a sequence σ on which BETA purchases a cache of size k and
OPT uses a cache of size `

faultOPT (σ) ≥
k−1∑
i=`

(fi+1 − fi)(i − ` + 1)
1
i
.

Proof. If ` ≥ k then the lemma is trivial.
For ` < k, we prove the lemma by modifying the standard technique of

dividing the request sequence into phases. The first phase will begin with the
first request. If at some point i is the current size of BETA’s cache, i distinct
items have been requested during the current phase, and an item distinct from
the i items requested during this phase is the next request then end the current
phase and begin the next phase with the next request.

Consider a given phase which ends with BETA’s cache size equal to i. Since
BETA uses LRU as its paging strategy and because of the way a phase is ended,
during this phase BETA will fault on any item at most once. On the other hand
between the second request in this phase and the first request of the next phase
the optimal algorithm must fault at least i − ` + 1 times. If the size of BETA’s
cache was also i at the beginning of the phase then this phase contributes exactly
what is needed to the sum. If however BETA’s cache size was smaller then this
phase contributes (slightly) more than is necessary to the sum. ut

We now prove the positive result in Theorem 1.

Proof. First assume that k ≤ `. Since offline purchases ` cache slots the offline
cost is at least α`. Since BETA did not purchase the (k + 1)-th cache slot, at
the end faultBETA(σ) < αβk and cacheBETA(σ) = αk. Since β + 1 ≤ λ, the cost
of BETA is at most a factor of λ above the optimal offline cost.

Buying a Constant Competitive Ratio for Paging 103

Now assume that k > `. Using the previous lemma:

costOPT (σ) = cacheOPT (σ) + faultOPT (σ)

≥ α` +
k−1∑
i=`

(fi+1 − fi)(i − ` + 1)
1
i

≥ α` + αβ
k−1∑
i=`

(i − `)
1
i

≥ α` + αβ

(
k − ` − ` ln

k

`

)
.

Since the online cache cost is αk and the online fault cost is at most αβk, by
substituting y

.= k/` > 1 we have

costBETA(σ)/costOPT (σ) ≤ α(β + 1)k /

(
α` + αβ

(
k − ` − ` ln

k

`

))

= (β + 1)y / (1 + βy − β − β ln y) ≤ λ.

Here we used Lemma 1 to get the final inequality. Therefore, algorithm BETA
indeed is a λ-competitive online algorithm for paging with cache purchasing cost
c(x) = αx. This completes the proof of the positive statement in Theorem 1. ut

4 The Negative Result for Linear Cost Functions

In this section we prove the negative result claimed in Theorem 1 for linear cost
functions of the form c(x) = αx with α � 1. The proof is done by an adversary
argument.

Assume that there is an online algorithm A which is r-competitive for some
1 < r < λ and that α is very large. Further, assume that the pages are numbered
1,2,3,. . . . The adversary always requests the smallest numbered page which is
not in the online cache. Thus, the online algorithm faults on every request. Let
σ be the infinite sequence of requests generated by this procedure.

In order to be finitely competitive, the online algorithm cannot have any
fixed upper bound on the size of its cache; hence, the number of purchased slots
is unbounded. Let fi be the number of requests (respectively, the number of page
faults) which precede the purchase of the ith cache slot. Note that f1 = 0, and
that f1, f2, . . . is a monotone non-decreasing integer sequence. The cost to A for
the requests 1, . . . , fi equals iα + fi.

We will now consider the adversary’s cost for requests σi = 1, . . . , fi. Guided
by the results of Sleator & Tarjan [7] (see Proposition 1) we upper bound the
adversary’s cost in the following lemma:

Lemma 3. If A purchases the jth cache slot after fj faults and OPT uses a
cache of size ` then

faultOPT (σi) ≤ i +
i−1∑
j=`

(fj+1 − fj)
j − ` + 1

j
.

104 J. Csirik et al.

Proof. Any algorithm will fault the first time a particular page is requested.
These i faults correspond to the first term in the right hand side of the above
inequality. Below we will explicitly exclude these faults from consideration.

As in Lemma 2 we divide the request sequence into phases. However, this
time we do this in a slightly different way. The first phase begins with the first
request. If j is the size of A’s cache and j requests have been made during the
current phase then the current phase ends and the next request begins a new
phase. Note that this differs slightly from Lemma 2, since the first request in a
phase need not be distinct from all requests in the previous phase.

Consider a phase which begins with the size of A’s cache equal to j and ends
with the size of A’s cache equal to j′. During this phase there will be j′ requests
from items 1, 2, . . . , j′ + 1. Note that none of the items labeled j + 2, . . . , j′ + 1
will have been requested in any previous phase, since the size of A’s cache prior
to this phase was j. Recall that the first fault on each of these j′ − j items has
already been counted.

From this point we proceed in a fairly standard manner. We claim that an
optimal offline algorithm will incur at most j′ − ` + 1 faults. Note that this is
equivalent to stating that the optimal offline algorithm will not fault on ` − 1
requests.

If possible, whenever the offline algorithm faults it evicts an item which will
not be requested in the remainder of this phase. If at some point it is not possible
for the offline algorithm to evict such an item then all ` items in its cache will
be requested later in this phase. In this case, it is easy to see that there will
be at least ` − 1 requests on which the offline algorithm will not fault. On the
other hand, if the offline algorithm is able to evict j′ − ` + 1 items which will
not be requested later in this phase then its cache contains all of the (at most `
distinct) items which will be requested during the remainder of the phase.

Of the j′−`+1 faults which the offline algorithm will incur during this phase,
j′ − j faults correspond to the first time an item is requested (these j′ − j faults
have already been counted). So this phase will contribute j − ` + 1 faults to the
sum. If j′ = j then this phase contributes precisely what is claimed. If instead
j′ > j this phase contributes (slightly) less. ut

We now prove the lower bound of λ on any online algorithm.

Proof. Fix an online algorithm A. For a given α, if fi/i is not bounded above
then A cannot have a constant competitive ratio. Clearly, fi/i is bounded be-
low by 0 (for i ≥ 1). So L = lim infi

fi

i exists. Suppose that the adversary
initially purchases i/λ cache locations and serves σi with only these locations.
From the definition of L, we know that for any ε there are arbitrarily large
M such that fi/i ≥ L − ε for all i ≥ M/λ. Further for sufficiently large M ,∣∣∣∑M−1

j=M/λ 1/j − ln(λ)
∣∣∣ ≤ ε. Using the previous lemma we get

costA − b

costOPT
≥ αM + fM − b

αM/λ + M +
∑M−1

j=M/λ(fj+1 − fj)
j−M/λ+1

j

Buying a Constant Competitive Ratio for Paging 105

=
αM + fM − b

αM/λ + M + fM
M−M/λ

M−1 +
∑M−1

j=M/λ+1 fj
1−M/λ
j(j−1) − fM/λ

λ
M

≥ α + L − b/M − ε

α/λ + 1 + (L + 2ε)(1 − 1/λ − 1/λ(ln(λ) − ε) + (ln(λ) + ε)/M)

≥ α + L − b/M − ε

α/λ + 1 + (L + 2ε)/λ + (L + 2ε)(ln(λ) + ε)/M
.

In the final inequality we have used that 1/λ = 1 − 1/λ − 1/λ ln(λ). For α and
M sufficiently large, the final value can be made arbitrarily close to λ. ut

5 The Results for Polynomial Cost Functions

In this section we prove the two results (one positive and one negative) that are
claimed in Theorem 2 for cost functions of the form c(x) = xd with d ≥ 2.

We start with the proof of the positive result.

Proof. Let ε > 0 be a small real number. Similar to Section 3 we consider an
online algorithm BETA2 that uses LRU as its paging strategy. This time the
online algorithm increases its cache size to k as soon as it has incurred at least
dε(k − 1)d page faults. We will show that this algorithm has a competitive ratio
of at most d(1 + d−ε)/[(1 − ε) ln d].

Consider an arbitrary request sequence σ. Let k denote the final cache size
of BETA2, and let ` denote the optimal offline cache size for σ. If ` ≥ k + 1, the
offline cost is at least (k+1)d and the online cost is at most kd +dε(k+1)d. Then
the online cost is at most a factor of 1 + dε above the offline cost. From now on
we assume that ` ≤ k. For i = `, . . . , k we denote by fi the total number of page
faults that BETA2 incurs until the moment when it purchases the ith cache slot.
Using an argument similar to that of Lemma 2, we get that the optimal offline
algorithm incurs at least

∑k−1
i=` (fi+1 − fi)(i − ` + 1) 1

i page faults during this
time. Therefore,

costOPT (σ) ≥ `d +
k−1∑
i=`

(fi+1 − fi)
i − ` + 1

i

≥ `d + dε
k−1∑
i=`

((i + 1)d − id)
i − `

i

= `d + dε(kd − `d) − dε`
k−1∑
i=`

((i + 1)d − id)
1
i

≥ `d + dε(kd − `d) − dε`

∫ k

`

d · xd−1

x
dx

106 J. Csirik et al.

= `d + dε(kd − `d) − `
d1+ε

d − 1
(kd−1 − `d−1)

≈ `d + dε(k − `)kd−1.

The online cache cost is approximately costBETA2 (σ) ≈ (1+dε)kd. Substituting
y := `/k ≤ 1 and putting things together we get

costBETA2 (σ)/costOPT (σ) ≤ (1 + dε)kd

`d + dε(k − `)kd−1 =
1 + dε

yd + dε(1 − y)
. (4)

The denominator in the right hand side of (4) is minimized for y = d(ε−1)/(d−1)

and hence is at least

d(ε−1)d/(d−1) + dε
(
1 − d(ε−1)/(d−1)

)
≥ dε

(
1 − d(ε−1)/(d−1)

)
.

By applying some (tedious) calculus we get that as d tends to infinity, the func-
tion 1−d(ε−1)/(d−1) grows like (1−ε) ln d

d . By combining these observations with
the inequality in (4), we conclude that the competitive ratio R of BETA2 is
bounded by

R ≤ (1 + d−ε)d
(1 − ε) ln d

.

This completes the proof of the positive statement in Theorem 2. ut
We turn to the proof of the negative statement in Theorem 2 which is done by
an adversary argument.

Proof. Consider an r-competitive online algorithm for cost functions of the form
c(x) = xd. The pages are numbered 1,2,3,. . . , and the adversary always requests
the smallest numbered page which is not in the online cache. Thus, the online
algorithm faults on every request. In order to have a finite competitive ratio, the
online algorithm cannot run forever with the same number of slots. Hence, the
number of purchased slots must eventually exceed gr where g is a huge integer.
Suppose that after ig requests the online cache is extended for the first time to
a size k ≥ gr. Then the corresponding online cost at this moment is at least
ig + (gr)d.

Now consider the optimal offline algorithm for cache size gr − g + 1. Since
the online algorithm was serving the first ig requests with a cache size of at
most gr−1, the results of Sleator & Tarjan [7] (see Proposition 1) yield that the
number of offline faults is at most

ig · (gr − 1) − (gr − g + 1) + 1
gr − 1

=
ig(g − 1)
gr − 1

≤ ig
r

.

The offline cache cost is (gr−g+1)d. Since the online algorithm is r-competitive,
there exists a constant b such that the following inequality is fulfilled for all
integers g; cf. equation (1):

ig + (gr)d ≤ r ·
(

ig
r

+ (gr − g + 1)d

)
+ b.

Buying a Constant Competitive Ratio for Paging 107

Since g can be arbitrarily large, this implies rd ≤ r(r − 1)d which is equivalent
to

1
r

≤
(

1 − 1
r

)d

. (5)

Now suppose that r < d/ ln d. Then the left hand side in (5) is at least ln d/d,
whereas the right hand side is at most 1/d. This contradiction completes the
proof of the negative statement in Theorem 2. ut

6 The Results for the General Case

In this section we prove the two results (one positive and one negative) that are
claimed in Theorem 3.

We start with the proof of the positive result.

Proof. So we assume that the cost function c(x) satisfies condition (3). Fix a
request sequence σ. We may assume that the optimal offline algorithm for σ
uses a cache of size xOPT ≥ X. The case when xOPT < X can be disregarded
by making b in the definition of competitiveness sufficiently large; in fact, any b
greater than c(X) will do.

Consider the algorithm BAL which uses LRU as its paging strategy and which
tries to balance its cache cost and its fault cost. In other words, BAL increases its
cache size to x as soon as faultBAL ≥ c(x). Until the time where BAL purchases
a cache of size q · xOPT , the cost ratio of online to offline is at most 2p: At this
time cacheBAL = c(qxOPT) ≤ p · c(xOPT) and faultBAL ≈ cacheBAL, whereas
the offline cost is at least c(xOPT). From the time where BAL purchases a cache
of size q · xOPT onwards, the ratio is at most 2q/(q − 1): By using the result of
Sleator & Tarjan as stated in Proposition 1 with ` = xOPT and k = q · xOPT ,
we get that faultBAL/faultOPT ≤ qxOPT/(qxOPT − xOPT + 1). Therefore,

costBAL ≈ 2 faultBAL ≤ 2
q · xOPT · faultOPT

qxOPT − xOPT + 1
<

2q

q − 1
costOPT .

To summarize, we have shown that BAL is max{2p, 2q/(q − 1)}-competitive.
This completes the argument for the positive result. ut

Now let us turn to the negative result.

Proof. So we assume that the cost function c(x) does not satisfy the condition
(3), and that therefore

∀q > 1 ∀p > 0 ∀s ≥ 0 ∀X > 0 ∃x ≥ X : c(qx) > p · c(x) + s. (6)

The idea is quite simple. If OPT uses a cache of size x then an online algorithm
which wants to be R competitive must eventually purchase a cache of size px for

108 J. Csirik et al.

some p ≈ R/(R−1). The result of Sleator and Tarjan as stated in Proposition 1
requires that R · faultOPT − faultA cannot be too large. On the other hand,
Rc(x)−c(px) can be made arbitrarily large, since c is not polynomially bounded.

Now for the details. We will proceed by contradiction. Assume that there
is an algorithm A which is R-competitive for some R > 1 and fix b as in the
definition of competitiveness. By using (6) we can choose x to satisfy

c

(
x

2R − 1
2R − 2

)
> R · c(x) + x(2R − 1)/2 + R + b.

If we use the lower bound sequence from Proposition 1 for k = x(2R− 1)/(2R−
2) − 1 and ` = x until A purchases a cache of size x(2R − 1)/(2R − 2), then
R ·faultBEL(σ)−faultA(σ) ≤ x(2R−1)/2. Note that A must eventually purchase
a cache of this size, since otherwise costA will tend to ∞ while costOPT ≤
c((2R − 1)x/(2R − 2)) + (2R − 1)x/(2R − 2). Therefore,

costA(σ) = cacheA(σ) + faultA(σ)
> R · cacheBEL(σ) + R · faultBEL(σ) + b

= R · costOPT (σ) + b.

This contradiction completes the proof of the negative result in Theorem 3. ut

7 Conclusion

We have considered a simple model of caching which integrates the ability to
add additional cache locations. A number of results for linear, polynomial, and
arbitrary cost functions have been found. One possible direction for further study
of this problem is to consider the degree to which randomization can further
reduce the competitive ratios found in this paper. The primary difficulty when
attacking the randomized version of the problem is finding relationships between
the costs of the online and offline algorithms when the cache sizes are unequal.

References

1. L.A. Belady. A study of replacement algorithms for virtual storage computers.
IBM Systems Journal 5, 78–101, 1966.

2. A. Borodin and R. El Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, 1998.

3. R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, and D.E. Knuth.
On The Lambert W Function. Maple Share Library.

4. Cs. Imreh and J. Noga. Scheduling with Machine Cost. Proceedings 2nd Inter-
national Workshop on Approximation Algorithms, Springer LNCS 1671, 168–176,
1999.

5. S. Irani. Competitive analysis of paging. In A. Fiat and G.J. Woeginger (eds.)
Online Algorithms – The State of the Art. Springer LNCS 1442, 52–73, 1998.

6. A. Karlin, M. Manasse, L. McGeoch, and S. Owicki. Competitive randomized
algorithms for nonuniform problems. Algorithmica 11, 542–571, 1994.

7. D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging
rules. Communications of the ACM 28, 202–208, 1985.

	Introduction
	Our Results
	The Positive Result for Linear Cost Functions
	The Negative Result for Linear Cost Functions
	The Results for Polynomial Cost Functions
	The Results for the General Case
	Conclusion

