Abstract
A minimal perfect hash function for a set S is an injective mapping from S to {0,..., |S|- 1}. Taking as our model of computation a unit-cost RAM with a word length of ω bits, we consider the problem of constructing minimal perfect hash functions with constant evaluation time for arbitrary subsets of U = {0,..., 2w - 1}. Pagh recently described a simple randomized algorithm that, given a set S ⊆ U of size n, works in O(n) expected time and computes a minimal perfect hash function for S whose representation, besides a constant number of words, is a table of at most (2 + ε)n integers in the range {0,..., n-1}, for arbitrary fixed ε > 0. Extending his method, we show how to replace the factor of 2 + ε by 1 + ε.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Z. J. Czech, G. Havas, and B. S. Majewski, An optimal algorithm for generating minimal perfect hash functions, Inform. Process. Lett. 43 (1992), pp. 257–264.
Z. J. Czech, G. Havas, and B. S. Majewski, Perfect hashing, Theoret. Comput. Sci. 182 (1997), pp. 1–143.
M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger, Polynomial hash functions are reliable, in Proc. 19th International Colloquium on Automata, Languages and Programming (ICALP 1992), Lecture Notes in Computer Science, Springer, Berlin, Vol. 623, pp. 235–246.
E. A. Fox, L. S. Heath, Q. F. Chen, and A. M. Daoud, Practical minimal perfect hash functions for large databases, Comm. Assoc. Comput. Mach. 35 (1992), pp. 105–121.
M. L. Fredman and J. Komlós, On the size of separating systems and families of perfect hash functions, SIAM J. Alg. Disc. Meth. 5 (1984), pp. 61–68.
M. L. Fredman, J. Komlós, and E. Szemerédi, Storing a sparse table with O(1) worst case access time, J. Assoc. Comput. Mach. 31 (1984), pp. 538–544.
J. Galambos and I. Simonelli, Bonferroni-type Inequalities with Applications, Springer, New York, 1996.
T. Hagerup and T. Tholey, Efficient minimal perfect hashing in nearly minimal space, in Proc. 18th Annual Symposium on Theoretical Aspects of Computer Science (STACS 2001), Lecture Notes in Computer Science, Springer, Berlin, Vol. 2010, pp. 317–326.
G. Havas, B. S. Majewski, N. C. Wormald, and Z. J. Czech, Graphs, hypergraphs and hashing, in Proc. 19th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 1993), Lecture Notes in Computer Science, Springer, Berlin, Vol. 790, pp. 153–165.
R. Pagh, Hash and displace: Efficient evaluation of minimal perfect hash functions, in Proc. 6th International Workshop on Algorithms and Data Structures (WADS 1999), Lecture Notes in Computer Science, Springer, Berlin, Vol. 1663, pp. 49–54.
J. P. Schmidt and A. Siegel, The spatial complexity of oblivious k-probe hash functions, SIAM J. Comput. 19 (1990), pp. 775–786.
R. E. Tarjan and A. C.-C. Yao, Storing a sparse table, Comm. Assoc. Comput. Mach. 22 (1979), pp. 606–611.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dietzfelbinger, M., Hagerup, T. (2001). Simple Minimal Perfect Hashing in Less Space. In: auf der Heide, F.M. (eds) Algorithms — ESA 2001. ESA 2001. Lecture Notes in Computer Science, vol 2161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44676-1_9
Download citation
DOI: https://doi.org/10.1007/3-540-44676-1_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42493-2
Online ISBN: 978-3-540-44676-7
eBook Packages: Springer Book Archive