Skip to main content

Simple Minimal Perfect Hashing in Less Space

  • Conference paper
  • First Online:
Algorithms — ESA 2001 (ESA 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2161))

Included in the following conference series:

  • 1682 Accesses

Abstract

A minimal perfect hash function for a set S is an injective mapping from S to {0,..., |S|- 1}. Taking as our model of computation a unit-cost RAM with a word length of ω bits, we consider the problem of constructing minimal perfect hash functions with constant evaluation time for arbitrary subsets of U = {0,..., 2w - 1}. Pagh recently described a simple randomized algorithm that, given a set SU of size n, works in O(n) expected time and computes a minimal perfect hash function for S whose representation, besides a constant number of words, is a table of at most (2 + ε)n integers in the range {0,..., n-1}, for arbitrary fixed ε > 0. Extending his method, we show how to replace the factor of 2 + ε by 1 + ε.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Z. J. Czech, G. Havas, and B. S. Majewski, An optimal algorithm for generating minimal perfect hash functions, Inform. Process. Lett. 43 (1992), pp. 257–264.

    Article  MATH  MathSciNet  Google Scholar 

  2. Z. J. Czech, G. Havas, and B. S. Majewski, Perfect hashing, Theoret. Comput. Sci. 182 (1997), pp. 1–143.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger, Polynomial hash functions are reliable, in Proc. 19th International Colloquium on Automata, Languages and Programming (ICALP 1992), Lecture Notes in Computer Science, Springer, Berlin, Vol. 623, pp. 235–246.

    Google Scholar 

  4. E. A. Fox, L. S. Heath, Q. F. Chen, and A. M. Daoud, Practical minimal perfect hash functions for large databases, Comm. Assoc. Comput. Mach. 35 (1992), pp. 105–121.

    Google Scholar 

  5. M. L. Fredman and J. Komlós, On the size of separating systems and families of perfect hash functions, SIAM J. Alg. Disc. Meth. 5 (1984), pp. 61–68.

    Article  MATH  Google Scholar 

  6. M. L. Fredman, J. Komlós, and E. Szemerédi, Storing a sparse table with O(1) worst case access time, J. Assoc. Comput. Mach. 31 (1984), pp. 538–544.

    MATH  MathSciNet  Google Scholar 

  7. J. Galambos and I. Simonelli, Bonferroni-type Inequalities with Applications, Springer, New York, 1996.

    MATH  Google Scholar 

  8. T. Hagerup and T. Tholey, Efficient minimal perfect hashing in nearly minimal space, in Proc. 18th Annual Symposium on Theoretical Aspects of Computer Science (STACS 2001), Lecture Notes in Computer Science, Springer, Berlin, Vol. 2010, pp. 317–326.

    Google Scholar 

  9. G. Havas, B. S. Majewski, N. C. Wormald, and Z. J. Czech, Graphs, hypergraphs and hashing, in Proc. 19th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 1993), Lecture Notes in Computer Science, Springer, Berlin, Vol. 790, pp. 153–165.

    Google Scholar 

  10. R. Pagh, Hash and displace: Efficient evaluation of minimal perfect hash functions, in Proc. 6th International Workshop on Algorithms and Data Structures (WADS 1999), Lecture Notes in Computer Science, Springer, Berlin, Vol. 1663, pp. 49–54.

    Chapter  Google Scholar 

  11. J. P. Schmidt and A. Siegel, The spatial complexity of oblivious k-probe hash functions, SIAM J. Comput. 19 (1990), pp. 775–786.

    Article  MATH  MathSciNet  Google Scholar 

  12. R. E. Tarjan and A. C.-C. Yao, Storing a sparse table, Comm. Assoc. Comput. Mach. 22 (1979), pp. 606–611.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dietzfelbinger, M., Hagerup, T. (2001). Simple Minimal Perfect Hashing in Less Space. In: auf der Heide, F.M. (eds) Algorithms — ESA 2001. ESA 2001. Lecture Notes in Computer Science, vol 2161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44676-1_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-44676-1_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42493-2

  • Online ISBN: 978-3-540-44676-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics