Skip to main content

Counting H-Colorings of Partial k-Trees

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2108))

Included in the following conference series:

  • 585 Accesses

Abstract

The problem of counting all H-colorings of a graph G of n vertices is considered. While the problem is, in general, #P-complete, we give linear time algorithms that solve the main variants of this problem when the input graph G is a k-tree or, in the case where G is directed, when the underlying graph of G is a k-tree. Our algorithms remain polynomial even in the case where k = O(log n) or in the case where the size of H is O(n). Our results are easy to implement and imply the existence of polynomial time algorithms for a series of problems on partial k-trees such as core checking and chromatic polynomial computation.

Research supported by the EU project ALCOM-FT (IST-99-14186). The research of the 3rd author was supported by the Ministry of Education and Culture of Spain, Grant number MEC-DGES SB98 0K148809.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Arnborg, D.G. Corneil, and A. Proskurowski Complexity of finding embeddings in a k-tree. SIAM Journal on Algebraic and Discrete Mathematics, 8:277–284, 1993.

    Article  MathSciNet  Google Scholar 

  2. Stefan Arnborg, Jens Lagergren, and Detlef Seese Easy problems for tree-decomposable graphs. Journal of Algorithms, 12:308–340, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  3. Artur Andrzejak An algorithm for the Tutte polynomials of graphs of bounded treewidth. Discrete Mathematics, 190(1-3):39–54, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  4. Stefan Arnborg Efficient algorithms for combinatorial problems on graphs with bounded decomposability-A survey. BIT, 25:2–23, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  5. Russ Bubley, Martin Dyer, Catherine Greenhill, and Mark Jerrum On approximately counting colorings of small degree graphs. SIAM Journal on Computing, 29(2):387–400, 1999.

    Article  MathSciNet  Google Scholar 

  6. H.L. Bodlaender and T. Kloks Efficient and constructive algorithms for the pathwidth and treewidth of graphs. Journal of Algorithms, 21:358–402, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  7. Hans Leo Bodlaender Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees. Journal of Algorithms, 11:631–643, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  8. H.L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing, 25:1305–1317, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  9. Hans L. Bodlaender Treewidth: algorithmic techniques and results. In Mathematical foundations of computer science 1997 (Bratislava), pages 19–36. Springer, Berlin, 1997.

    Chapter  Google Scholar 

  10. Colin Cooper, Martin Dyer, and Alan Frieze On Marcov chains for randomly H-coloring a graph. Journal of Algorithms (to appear).

    Google Scholar 

  11. Bruno Courcelle and M. Mosbah Monadic second-order evaluations on tree-decomposable graphs. Theor. Comp. Sc., 109:49–82, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  12. B. Courcelle, J.A. Makowski, and U. Rotics On the fixed parameter complexity of graph enumeration problems definable in monadic second order logic. Discrete Applied Mathematics (to appear).

    Google Scholar 

  13. Bruno Courcelle Graph rewriting: an algebraic and logical approach. In Jan van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, pages 192–242, Amsterdam, 1990. North Holland Publ. Comp.

    Google Scholar 

  14. Bruno Courcelle The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inform. and Comput., 85(1):12–75, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  15. Martin Dyer, Alan Frieze, and Mark Jerrum On counting independent sets in sparse graphs. In 40th Annual Symposium on Foundations of Computer Science, pages 210–217, 1999.

    Google Scholar 

  16. M.E. Dyer and C.S. Greenhill The complexity of counting graph homomorphisms. In 11th ACM/SIAM Symposium on Discrete Algorithms, pages 246–255, 2000.

    Google Scholar 

  17. Josep Díaz, Jaroslav Ne#x0161;etřil, and Maria Serna H-coloring of large degree graphs. Technical Report No. 2000-465, KAM-DIMATIA Series, Charles University, 2000.

    Google Scholar 

  18. K. Edwards The complexity of coloring problems on dense graphs. Theoretical Computer Science, 16:337–343, 1986.

    Article  Google Scholar 

  19. Anna Galluccio, Pavol Hell, and Jaroslav Nešetřil The complexity of Hcolouring of bounded degree graphs. Discrete Math., 222(1-3):101–109, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  20. M.R. Garey and D.S. Johnson Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979.

    MATH  Google Scholar 

  21. P. Hell and J. Nešetřil On the complexity of H-coloring. Journal of Combinatorial Theory, series B, 48:92–110, 1990.

    Article  MATH  Google Scholar 

  22. P. Hell and J. Nešetřil The core of a graph. Discrete Mathematics, 109: 117–126, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Jerrum A very simple algorithm for stimating the number of k-colorings of a low degree graph. Random Structures and Algorithms, 7:157–165, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  24. Klaus Jansen and Petra Scheffler Generalized coloring for tree-like graphs. Discrete Appl. Math., 75(2):135–155, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  25. L. Levin Universal sequential search problems. Problems of Information Transmissions, 9:265–266, 1973.

    Google Scholar 

  26. Jaroslav Nešetřil Aspects of structural combinatorics (graph homomorphisms and their use). Taiwanese J. Math., 3(4):381–423, 1999.

    MathSciNet  MATH  Google Scholar 

  27. B. Reed Finding approximate separators and computing tree-width quickly. In 24th ACM Symposium on Theory of Computing, pages 221–228, 1992.

    Google Scholar 

  28. Neil Robertson and Paul D. Seymour Graph minors — a survey. In I. Anderson editor, Surveys in Combinatorics, pages 153–171. Cambridge Univ. Press, 1985.

    Google Scholar 

  29. J.A. Telle and A. Proskurowski Algorithms for vertex partitioning problems on partial k-trees. SIAM Journal on Discrete Mathematics, 10:529–550, 1997.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Díaz, J., Serna, M., Thilikos, D.M. (2001). Counting H-Colorings of Partial k-Trees. In: Wang, J. (eds) Computing and Combinatorics. COCOON 2001. Lecture Notes in Computer Science, vol 2108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44679-6_33

Download citation

  • DOI: https://doi.org/10.1007/3-540-44679-6_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42494-9

  • Online ISBN: 978-3-540-44679-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics