Skip to main content

A Linear Time Algorithm for Enumerating All the Minimum and Minimal Separators of a Chordal Graph

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2108))

Included in the following conference series:

Abstract

We give O(m+ n) algorithms for enumerating all minimum separators as well as minimal separators in a connected chordal graph. We give a tight upper bound, n - κ(G) - 1, for the number of minimal separators in a chordal graph. An important contribution of the paper is our characterisation of minimal (minimum) separators of chordal graphs and the above results are obtained as consequences of the characterisations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Ariyoshi, Cut-set graph and systematic generation of separating sets. IEEE Transactions on circuit theory, CT-19 (1972) 233–240.

    Article  MathSciNet  Google Scholar 

  2. G.A. Dirac, On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg, 25:71–76, 1961.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Even, R.E. Tarjan, Network Flow And Testing Graph Connectivity SIAM J. Comp. 4(4) 507–518, December 1975.

    Article  MATH  MathSciNet  Google Scholar 

  4. H.N. Gabow, Using Expander Graphs to Find Vertex Connectivity. Annual Symposium on Foundations of Computer Science, 2000.

    Google Scholar 

  5. L.A. Goldberg, Efficient Algorithms For Listing Combinatorial Structures. Cambridge University Press, Cambridge, 1993.

    MATH  Google Scholar 

  6. M.C. Golumbic, Algorithmic Graph Theory And Perfect Graphs. Academic Press, New York, 1980.

    MATH  Google Scholar 

  7. F. Harary, Graph Theory. Addison-Wesley Reading, MA, 1969.

    Google Scholar 

  8. Hong Shen and Weifa Liang, Efficient Enumeration Of All Minimal Separators In A Graph Theoretical Computer Science, 180(1-2) 169–180, 10 June 1997

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Kanevsky, Finding All Minimum Size Separating VertexSets In Graphs. NETWORKS, 23 533–541,1993.

    Article  MATH  MathSciNet  Google Scholar 

  10. T. Kloks and D. Kratsch, Listing All Minimal Separators Of A Graph SIAM J. Comput. 27(3) 605–613 June 1998

    Article  MATH  MathSciNet  Google Scholar 

  11. T. Kloks, H. Bodlaender and D. Kratsch, Treewidth And Path Width Of Permutation Graphs SIAM J. Descrete Math. 8, 606–616, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Kloks, Treewidth-Computations And Approximations. Lecture Notes In Computer Science 842, Springer Verlag, Berlin 1994.

    MATH  Google Scholar 

  13. T. Kloks, Treewidth Of Circle Graphs. Int. J. Of Foundations In Comp. Sci., 7 111–120, 1996.

    Article  MATH  Google Scholar 

  14. T. Kloks and D. Kratsch, Treewidth Of Chordal Bipartite Graphsa. J. Algorithms, 19, 266–281 1995.

    Article  MATH  MathSciNet  Google Scholar 

  15. R.H. Mohring, Graph Problems Related To Gate MatrixL ayout And PLA Folding. Computational Graph Theory, Pages 17–52, Springer, Wein, New York,1990.

    Google Scholar 

  16. Monika R Henzinger, A Static 2-Approximation Algorithm For Vertex Connectivity And An Incremental Approximation Algorithm For Edge And Vertex Connectivity. J. of Algorithms 24(1) 194–220 July 1997

    Article  MATH  MathSciNet  Google Scholar 

  17. Monika R Henzinger, Satish Rao, and H.N. Gabow, Computing VertexConne ctivity: New Bounds From Old Techniques. 37th Anual Symposium On Foundations Of Computer Science, 462–471 Oct. 1996.

    Google Scholar 

  18. Samir Khuller and Baruch Schieber, k-Connectivity And Finding Disjoint s-t Paths In Graphs. SIAM J. Comp. 20(2) 352–375 April 1991

    Article  MATH  MathSciNet  Google Scholar 

  19. Shimon Even, An Algorithm For Determining Whether The Connectivity Of A Graph Is At Least k. SIAM J. Comp. 4(3) 393–396 September 1975.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Yannakakis, Computing The Minimum Fill-in Is NP-Complete SIAM J. on Alge. Discre. Math. 2 77–79, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Yannakakis and R.E. Tarjan, Simple Linear Time Algorithms To Test Chordality of Graphs, Test Acyclicity of hypergraphs and Selectively Reduce Acyclic Hypergraphs. SIAM J. Comput. 13,566–579, 1984

    Article  MATH  MathSciNet  Google Scholar 

  22. Zvi Galil, Finding The Vertex Connectivity Of Graphs. SIAM J. Compu. 9(1) 197–199 Feb 1980.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chandran, L.S. (2001). A Linear Time Algorithm for Enumerating All the Minimum and Minimal Separators of a Chordal Graph. In: Wang, J. (eds) Computing and Combinatorics. COCOON 2001. Lecture Notes in Computer Science, vol 2108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44679-6_34

Download citation

  • DOI: https://doi.org/10.1007/3-540-44679-6_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42494-9

  • Online ISBN: 978-3-540-44679-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics