
HMM: A Cluster Membership Service�

Francesc D. Muñoz-Escóı, Óscar Gomis, Pablo Galdámez, and José M.
Bernabéu-Aubán

Instituto Tecnológico de Informática, Universidad Politécnica de Valencia
Camino de Vera, s/n, 46071 Valencia, Spain

{fmunyoz,ogomis,pgaldam,josep}@iti.upv.es

Abstract. The Hidra Membership Monitor (HMM) is a distributed ser-
vice that maintains the current set of active nodes in a cluster of ma-
chines. This protocol allows the detection of multiple machine joins or
failures in a unique reconfiguration, using a low amount of messages
(with a cost that is linear on the number of nodes). These membership
services are needed to detect cluster changes as soon as possible, ini-
tiating then the reconfiguration of the cluster state, where support for
replicated objects has been included.
The HMM also manages and synchronises the reconfiguration steps
needed by the kernel and Hidra components of each node, ensuring that
all of them take the same steps at once. Thus, our system does not need
an atomic multicast protocol to deliver the messages in these reconfig-
uration steps. All these services provide the basis to develop reliable
intracluster transport protocols and to reduce the reconfiguration time
of replicated objects and services.

1 Introduction

Hidra [3,8] is an architecture that provides high availability support in a dis-
tributed environment based on a cluster of machines interconnected by a private
network. This architecture uses a low-level ORB [9] placed in the kernel of each
node which includes the support needed for replicated objects. Thus, replicated
objects can be used either in user-level applications or in kernel components
needed to provide a single-system image.

Our ORB is not completely CORBA-compliant, since it extends some of the
support that such an ORB must provide. Particularly, support for replicated
objects and reference counting has not been considered in CORBA as a service
of the ORB core, but they have been included in ours [6,4]. Both reference
counting and replication support need a membership service to know which are
the current active machines in the cluster and to reconfigure their state when a
new machine joins or a previously active node fails.

In general, a distributed system with high availability support needs a mem-
bership service. This service must be placed in the lowest layers of the system
� This work was partially supported by the CICYT (Comisión Interministerial de
Ciencia y Tecnoloǵıa) under project TIC99-0280-C02.

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 773–782, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

774 Francesc D. Muñoz-Escóı et al.

architecture to assist in the development of other fault tolerant services, and to
drive the reconfiguration protocols of these components, either in case of failures
or in case of new machines joining the system.

In our Hidra architecture, the reconfiguration protocols that must be exe-
cuted when a node fails or joins the cluster, need be synchronised, i.e., a recon-
figuration step has to be started only when all the active nodes have concluded
its previous step. Thus, the reconfiguration protocols know that the results of
other previous protocols are ready in all system nodes. This characteristic has
been used to recompute the reference counts of the ORB, which needs several
reconfiguration steps, and the state of the main serialiser object [7], whose re-
configuration must be done afterwards.

HMM provides this kind of synchronisation in its Steps stage. Thus, our
protocol manages in parallel the notification steps, their sinchronisation and
the periodic interchange of messages among live nodes. As a result, only a few
messages are needed to develop all these tasks.

The rest of the paper is structured as follows. Section 2 describes the system
model. Section 3 describes the entire protocol. Section 4 compares HMM with
other membership protocols and, finally, Sect. 5 provides the conclusions.

2 System Model

HMM is aimed to provide membership monitoring in a dynamic cluster with a
preconfigured maximum number of machines interconnected by a private net-
work. This scope determines the behaviour of the system and the assumptions
made by our protocol. Thus, cluster nodes have static identifiers, but these iden-
tifiers are complemented with a node sequence number that is increased each
time the node is restarted and allows us to use a fail-stop failure mode (since
each time a node is restarted, it joins the cluster with a different identifier).

No clock synchronisation is needed, but a maximum message delivery time
must exist. This allows us to decide when a message is lost, either due to a
network failure, a sender failure or lack of available buffers to receive it.

We also assume that the private network being used presents a kind of inter-
connection that prevents the appearance of network partitions. This assumption
is valid for a small cluster and some network topologies.

HMM uses the services of an unreliable transport layer which is assumed to
provide broadcast, multicast and point-to-point transmissions. It does not check
the delivery of such messages nor waits for any acknowledgement.

On top of the HMM, our ORB core uses the HMM notification services. To
this end, the HMM object provides a set of operations in its interface that allow
the registration of any Hidra component that wants to be notified when a given
reconfiguration sequence step number has been initiated. These steps constitute
the core of the ORB and associated components reconfiguration tasks and are
driven by the HMM.

HMM: A Cluster Membership Service 775

3 Protocol

HMM has to deal with either unique or multiple joins and failures in a single
reconfiguration of the cluster membership. This objective has been attained with
a sequence of stages (see Fig. 1) that manage the detection of a membership
change and its reconfiguration steps. Moreover, cluster nodes have a role that
can change in each stage.

INIT

STEPS MONITORING

RECONF

Join message
broadcast and

answered

Join
message
received

Steps concluded

Ping
messages

lost
Ping
messages
lost

Join message
received

New membership
found

Fig. 1. HMM stages and transitions

3.1 Member Roles

A node that uses the HMM may play one of the following roles:

– Master. The basic role of the master node is to drive the reconfiguration
steps and to accept join messages when new members arrive.

– Slave. Once a stable membership set has been found and the first step in the
Steps stage has been started, the slaves must receive the master ’s messages,
notify the registered packages about them and reply to the master.

– Beginner. This role applies to the node that detects a given number of ping
message losses. Once this situation arises, the sender of these messages is
assumed faulty, and the beginner node enters the Reconf stage.

– Unknown. When the Reconf stage is entered, all members that are not be-
ginners are marked as unknown.

3.2 Algorithm

The main algorithm is implemented as an automaton that uses the global vari-
ables shown in lines 8 to 14 of Fig. 2. There are several timers not shown in the
algorithm. They detect missed step, ends and endp messages. Thus, the sender
of the missed message can send it again.

776 Francesc D. Muñoz-Escóı et al.

1: algorithm hmm;
2: type
3: stage t = (INIT, STEPS,
4: MONITORING, RECONF);
5: role t = (MASTER, SLAVE,
6: BEGINNER, UNKNOWN);
7: var
8: stage : stage t; (* Current stage. *)
9: thisid : node t; (* Local node ID. *)

10: step : integer; (* Step number. *)
11: masterid : node t; (* Current master ID. *)
12: set : nodeset t; (* Membership. *)
13: seqnum : seqnum t; (* Config number. *)
14: role : role t; (* Role of this node. *)
15: begin

16: stage := INIT;
17: masterid := thisid;
18: seqnum := -1;
19: step := 0;
20: while true do
21: case stage of
22: INIT: set := emptySet;
23: addMember(set, thisid);
24: role := MASTER;
25: stInit;
26: STEPS: stSteps;
27: MONITORING: stMonitoring;
28: RECONF: stReconf;
29: esac;
30: end;

Fig. 2. Main automaton of HMM

As we can see in lines 16 to 25 of Fig. 2, each node starts in the Init stage
and plays the master role. The sequence number is initialised to -1 to ensure
that it will start with the zero value or the value proposed by the elected master
node. The membership set is initialised with only the local node. Once this node
joins the cluster, it receives the complete membership set.

Fig. 3. Algorithm of the Init stage

All the protocol stages are described in the following paragraphs.

HMM: A Cluster Membership Service 777

Init Stage: Figure 3 shows the Init stage. The local node builds a join message
and broadcasts it (lines 6 and 7). Later, it installs a timer (line 8) that raises a
timeout when joinTime has elapsed.

An event is later expected. It can be the reception of a message (line 12) or
the timeout signal (line 29). In the first case, HMM checks if the join message
has been answered by a master node using a newmem message. If so, the role is
changed to slave and the stage is changed to Steps where this message will be
processed (lines 15 to 19).

If a join message is received in this stage, the sender static identifier is
checked. If it is greater than the local identifier, the sender is added to the
current membership set (lines 23 to 24) and the stage is marked as Steps, but no
transition is made until the join timeout is signaled. Thus, multiple nodes can
be added simultaneously when all nodes are powered on at once. If the sender
identifier is lower than the local one, this stage is reinitiated immediately.

Steps Stage: The algorithm of the Steps stage appears in Fig. 4. Once a node
has entered this stage, it enables the sending and reception of ping messages
in line 5. In this and the Monitoring stages the nodes are arranged in a logical
ring, using an increasing order of their static node identifiers. Thus, each node
periodically sends a ping message to its neighbour with greater static identifier,
except for the last node of the ring, which sends it to the first node in this order.

Lines 7 to 39 contain the code that has to be executed by the master node.
In each one of the steps, the master has to send a message to all current mem-
bers. This task is done using the multicast procedure provided by the unreliable
transport. Lines 8 to 18 give the message contents, depending on the step being
processed. When step 0 is initiated, the cluster sequence number is increased.

The notifyStep in line 19 is a procedure that invokes all registered Hidra
components that are interested in the current step number.

Once all these tasks have been completed, the master waits for an event (line
20). If all members have answered with ends or endp messages, the allAnswer-
sReceived case is taken. If so, the step number is increased and the Steps stage
is entered again. When all members have sent their final endp message (line 24),
the Steps stage is left and the Monitoring stage is entered. If a join message
is received, its sender is added to the membership set, and the step number is
reset to zero. As a result, the Steps stage is reinitiated. When some ping mes-
sages have been lost, a pingTimeout arises (lines 31 to 34), the role is changed to
beginner and the stage becomes a Reconf. Finally, when some change message
arrives, the role is changed to unknown and the stage to Reconf (lines 35 to 38).

On the other hand, if the node has a slave role, its tasks are shown in lines 41
to 67 of Fig. 4. To begin with, once it has entered this stage it waits immediately
for an event. The usual case is the reception of a message, either a newmem (lines
43 to 48) or a step one (lines 49 to 52). In both cases, the registered clients
are informed about the beginning of the step, using the notifyStep procedure
described above. Once this has concluded, an answer is returned to the master
node. Finally, the step is increased in both cases. If the received message was a

778 Francesc D. Muñoz-Escóı et al.

1: algorithm stSteps;
2: var
3: theMsg : msg;
4: begin
5: enablePings;
6: if role = MASTER
7: then begin
8: if step = 0
9: then begin

10: theMsg.kind = NEWMEM;
11: theMsg.contents = set;
12: seqnum := seqnum + 1;
13: end else begin
14: theMsg.kind = STEP;
15: theMsg.contents = step;
16: end;
17: theMsg.seqnum = seqnum;
18: multicast(theMsg);
19: notifyStep;
20: waitFor event;
21: case event of
22: allAnswersReceived:
23: step := step + 1;
24: allStepsConcluded:
25: step := 0;
26: stage := MONITORING;
27: joinReceived:
28: addMember(set,
29: sender);
30: step := 0;
31: pingTimeout:
32: step := 0;
33: role := BEGINNER;
34: stage := RECONF;

35: changeReceived:
36: step := 0;
37: role := UNKNOWN;
38: stage := RECONF;
39: end;
40: end else begin (* Role is SLAVE. *)
41: waitFor event;
42: case event of
43: newmemReceived:
44: setMembership(receivedMsg,
45: set, seqnum);
46: notifyStep;
47: sendEndsOrEndp;
48: step := step + 1;
49: stepReceived:
50: notifyStep;
51: sendEndsOrEndp;
52: step := step + 1;
53: joinReceived:(* Ignore JOINs *);
54: pingTimeout:
55: step := 0;
56: role := BEGINNER;
57: stage := RECONF;
58: changeReceived:
59: step := 0;
60: role := UNKNOWN;
61: stage := RECONF;
62: end;
63: if stepsConcluded then begin
64: step := 0;
65: stage := MONITORING;
66: end;
67: end;
68: end;

Fig. 4. Algorithm of the Steps stage

newmem one, the membership set and the configuration number of the node are
updated according to the message contents.

Another possibility is the reception of a join message, but this type of mes-
sage cannot be managed by a slave node and it is ignored. The last two cases
are managed the same way as the master node did.

Monitoring Stage: This stage is shown in Fig. 5. Take into account that the
procedure enablePings shown at the Steps stage, created a thread that periodi-
cally sends ping messages to its neighbour. This thread still runs in this stage.

In lines 3 to 24 there is a loop that only terminates when the stage is changed.
In this loop an event is waited for. Lines 7 to 9 deal with a newmem message,
leading to the Steps stage where this message will be processed. Lines 10 to
12 process a ping timeout, i.e., when several ping messages have been lost. In

HMM: A Cluster Membership Service 779

1: algorithm stMonitoring;
2: begin
3: while stage = MONITORING do
4: begin
5: waitFor event;
6: case event of
7: newmemReceived:
8: stage := STEPS;
9: requeueMessage;

10: pingTimeout:
11: role := BEGINNER;
12: stage := RECONF;
13: joinReceived:

14: if role = MASTER
15: then begin
16: addMember(set,
17: sender);
18: stage := STEPS;
19: end;
20: changeReceived:
21: step := 0;
22: role := UNKNOWN;
23: stage := RECONF;
24: esac;
25: end;
26: end;

Fig. 5. Algorithm of the Monitoring stage

that case, the stage is changed to Reconf and the role of the detector becomes
beginner. On the other hand, lines 13 to 19 maintain the actions to be taken
when a join message is received. If the receiver node is the master, it adds the
new node to the membership set, and changes the stage to Steps, otherwise the
message has to be ignored. Finally, when a change message is received (lines 20
to 23), the behaviour is the same shown in the previous stage.

Reconf Stage: Figure 6 shows the Reconf stage. While the nodes are in this
stage, ping messages are not sent nor expected. To this end, the disablePings
procedure is used in line 3.

The rest of the code depends on the role the local node plays. If it is a
beginner, it executes the instructions in lines 6 to 29, otherwise, it executes that
contained in lines 31 to 47. Note that several simultaneous failures may arise,
and several beginners may exist.

In case of a beginner node, it starts broadcasting a change message (line 7).
Next, the local node is added to the membership set and a reconfiguration timer
is set in line 9. When this time expires, all nodes that have replied with an alive
message form the next membership set. Later, an event is waited for. Thus, if
an alive message is received, its sender is included in the membership set being
built; if a change message is received, an alive message is replied to its sender.
This answer is needed because several simultaneous failures may arise, and all
beginners must behave as the rest of the nodes when a change message arrives.
When the reconfiguration timer is out, a new master is chosen among all live
nodes using the getMaster function, (line 18) and a setmem message is sent to it.
Finally, if a setmem message is received the node becomes master or if the mes-
sage is a newmem one, it becomes slave and in both cases a transition is initiated
to the Steps stage. These messages are generated by other beginner nodes that
have concluded this stage of the protocol before the local one. Additionally, if
a setmem message has been received, its message contents are used to build the
new membership set.

780 Francesc D. Muñoz-Escóı et al.

1: algorithm stReconf;
2: begin
3: disablePings;
4: set := emptySet;
5: if role = BEGINNER
6: then begin
7: broadcastChange;
8: addMember(set, thisid);
9: installTimer(reconfTime);

10: repeat
11: waitFor event;
12: case event of
13: aliveReceived:
14: addMember(set, sender);
15: changeReceived:
16: replyAlive;
17: reconfTimeout:
18: masterid := getMaster(set);
19: send(masterid, setmemMsg);
20: setmemReceived:
21: role := MASTER;
22: stage := STEPS;
23: setMembers(set, msgContents);
24: newmemReceived:

25: role := SLAVE;
26: stage := STEPS;
27: requeueMessage;
28: esac;
29: until stage RECONF;
30: end else begin
31: replyAlive;
32: repeat
33: waitFor event;
34: case event of
35: changeReceived:
36: replyAlive;
37: setmemReceived:
38: role := MASTER;
39: stage := STEPS;
40: setMembers(set, msgContents);
41: newmemReceived:
42: role := SLAVE;
43: stage := STEPS;
44: requeueMessage;
45: esac;
46: until stage RECONF;
47: end;
48: end;

Fig. 6. Algorithm of the Reconf stage

On the other hand, if the node plays the unknown role, it replies immediately
to its known beginner and later it waits for a message. Several messages are
accepted in this case, but they are treated as they had been in the other role.

4 Related Work

In [2] three membership algorithms are described and an environment with
bound delivery time is assumed. Its members are machines and no network
partition management is considered, as in our algorithm. However, it assumes
atomic multicasts that require an additional –and costly– protocol to implement
them. Its first algorithm is called periodic broadcast. In it, each member broad-
casts periodically a message indicating that it is present and that it belongs to
the group. To join a group, the new node has to broadcast a different message.
It is also able to detect multiple failures and joins, but requires a lot of messages
to do so.

The second and third algorithms of [2] are quite similar and we only describe
the third one (neighbour surveillance). It reduces the amount of messages needed
to check the stability of the membership set. The members are arranged in a
logical ring and they only send a message to one of their neighbours. However,
when a failure is detected all live members have to initiate a round of atomic
broadcasts to rebuild the set. Our algorithm requires a lower amount of messages

HMM: A Cluster Membership Service 781

to do so. Like our algorithm, these protocols are able to detect multiple joins
and failures.

In [5], a redundant broadcast channel interconnects all cluster nodes. It is in a
real-time system, and a time-division multiple-access (TDMA) schema is used to
gain access to the network. So, each node has an access period (or sending slot)
to the network in each TDMA round. In this environment, a node is considered
faulty if it has not sent anything in a given number of TDMA rounds, and all
nodes are aware of that fault. When a node restarts, it joins the cluster simply
sending a message in its sending slot for the current TDMA round (but it has
to wait until that sending slot arrives). Its main disadvantage is that it requires
that all nodes share the same clock or that they have highly synchronised clocks.
This requirement is not needed by our algorithm and it is difficult to achieve
in general-purpose systems. As an advantage, multiple failures and joins are
detected immediately without any extra messages.

In the strong group membership protocol of [10], a solution quite close to ours
is described. It uses a similar algorithm to join a new member and a logical ring
with a master once the membership set is stable. Once the ring is built, a member
sends heart-beat messages to its both neighbours. However, in case of failure,
the master is searched for initiating the reconfiguration. Their solution does not
work with multiple failures, since they depend on its master or in a submaster,
but if both fail, all nodes have to be restarted and they have to initiate again all
the protocol. They also use a two-phase commit protocol to commit the changes,
driven by the master. This solution requires more messages than ours in case of
join detection and in case of multiple failures or joins.

The following table summarises the worst-case costs (expressed in transmit-
ted messages) of several membership algorithms, assuming that no broadcast
service is available and that the number of nodes in the cluster is “N”. The
“join” and “failure” columns describe the amount of messages needed when a
join or failure arises, respectively. The last column gives how many messages are
needed in each of the monitoring rounds.

Amount of messages
Protocol Join Failure Monitoring

Periodic broadcast [2] N2 - N N2 - N N2 - N
Neighbour surveillance [2] N2 - N N2 - N N
Delta-4 [12] 4N - 4 4N - 4 2N - 2
Totem [1] 2N2 + 2N 6N N
Strong [10] 3N - 2 3N - 2 2N
Isis [11] 3N - 2 5N - 5 unknown
TTP [5] N2 - N N2 - N N
HMM 2N - 1 4N - 2 N

5 Conclusions

We have presented a membership protocol for a multi-computer cluster with ma-
chine granularity, integrated failure detectors, management of step-synchronous

782 Francesc D. Muñoz-Escóı et al.

reconfiguration protocols and a low amount of messages needed to accomplish
its tasks. It does not need clock synchronisation among the nodes that partic-
ipate in the protocol, although the distributed system where it runs cannot be
considered totally asynchronous.

References

1. Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P. Ciarfella. Fast
message ordering and membership using a logical token-passing ring. In Proc. of the
13th International Conference on Distributed Computing Systems, pages 551–560,
Pittsburgh, PA, EE.UU., May 1993. IEEE-CS Press. 781

2. F. Cristian. Reaching agreement on processor-group membership in synchronous
distributed systems. Distributed Computing, 6(4):175–187, 1991. 780, 781

3. P. Galdámez, F. D. Muñoz-Escóı, and J. M. Bernabéu-Aubán. High availability
support in CORBA environments. In F. Plášil and K. G. Jeffery, editors, 24th
Seminar on Current Trends in Theory and Practice of Informatics, Milovy, Czech
Republic, volume 1338 of LNCS, pages 407–414. Springer Verlag, November 1997.
773

4. P. Galdámez, F. D. Muñoz-Escóı, and J. M. Bernabéu-Aubán. Garbage collection
for mobile and replicated objects. In J. Pavelka, G. Tel, and M. Bartosek, editors,
26th Seminar on Current Trends in Theory and Practice of Informatics, Milovy,
Czech Republic, volume 1725 of LNCS, pages 373–380. Springer Verlag, November
1999. 773

5. H. Kopetz and G. Grünsteidl. TTP - A protocol for fault-tolerant real-time sys-
tems. IEEE Computer, pages 14–23, January 1994. 781

6. F. D. Muñoz-Escóı, P. Galdámez, and J. M. Bernabéu-Aubán. ROI: An invocation
mechanism for replicated objects. In Proc. of the 17th IEEE Symposium on Re-
liable Distributed Systems, Purdue Univ., West Lafayette, IN, USA, pages 29–35,
October 1998. 773

7. F. D. Muñoz-Escóı, P. Galdámez, and J. M. Bernabéu-Aubán. A synchronisation
mechanism for replicated objects. In B. Rovan, editor, Proc. of the 25th Conference
on Current Trends in Theory and Practice of Informatics, Jasná, Slovakia, volume
1521 of LNCS, pages 389–398. Springer Verlag, November 1998. 774

8. F. D. Muñoz-Escóı, P. Galdámez, and J. M. Bernabéu-Aubán. The NanOS cluster
operating system. In R. Buyya, editor, High Performance Cluster Computing,
volume 1, chapter 29, pages 682–702. Prentice-Hall PTR, Upper Saddle River, NJ,
USA, 1999. 773

9. OMG. The Common Object Request Broker: Architecture and Specification. Object
Management Group, July 1999. Revision 2.3. 773

10. R. Rajkumar, S. Fakhouri, and F. Jahanian. Processor group membership proto-
cols: Specification, design and implementation. In Proc. of the 12th IEEE Sympo-
sium on Reliable Distributed Systems, Princeton, NJ, pages 2–11, October 1993.
781

11. A. Ricciardi and K. P. Birman. Consistent process membership in asynchronous
environments. In K. P. Birman and R. van Renesse, editors, Reliable Distributed
Computing with the Isis Toolkit, chapter 13, pages 237–262. IEEE Computer Soci-
ety Press, Los Alamitos, CA, USA, 1994. 781

12. L. Rodrigues, P. Veŕıssimo, and J. Rufino. A low-level processor group membership
protocol for LANs. In Proc. of the 13th International Conference on Distributed
Computing Systems, pages 541–550, May 1993. 781

	HMM: A Cluster Membership Service
	Introduction
	System Model
	Protocol
	Member Roles
	Algorithm
	Init Stage:
	Steps Stage:
	Monitoring Stage:
	Reconf Stage:

	Related Work
	Conclusions

