Optimising the MPI Library for the T3E

Stephen Booth

EPCC, University of Edinburgh
Mayfield Road, Edinburgh EH9 3JZ
s.booth@epcc.ed.ac.uk

Abstract. This paper describes an optimised MPI library for the T3E.*
Previous versions of MPI for the T3E were built on top of the SHMEM
interface. This paper describes an optimised version that also uses addi-
tional capabilities of the low-level communication hardware.

The MPI library[1] is a fundamental part of many parallel applications. Al-
most any improvement to the performance of the MPI library will benefit a large
number of application codes. This paper describes optimisation work for the T3E
MPI library. We were able to utilise some special features in the T3E commu-
nication hardware to reduce message latency and improve the performance of
global barriers.

1 Implementation of the MPI Library

The original implementation of MPI for the T3D was developed at EPCCI[4].
This formed the basis for the MPI library shipped as part of the Cray Message
passing Toolkit (MPT) for the T3E. The T3D communication hardware provided
remote memory access between processors and some additional features such as
atomic swap and barrier. The T3D MPI library was built on top of the Cray
SHMEM library that provided direct access to all of these capabilities.

The fundamental building blocks of the library are “protocol messages”. The
sending and receiving processors need to exchange protocol messages to allow
matching pairs of send and receive calls to be coupled together. Once the calls
are coupled data is copied between processors using SHMEM put or get calls.
Each processor needs to maintain a queue of incoming messages and be able to
insert messages into remote queues. In the T3D library the queue was imple-
mented using the SHMEM library. Protocol messages were 4-word data packets
(corresponding to the packet size on the T3D network) and the queue was a sym-
metrically allocated (same address on all processors) buffer and lock variable.
The lock was always manipulated using the SHMEM atomic swap, so in addition
to a shmem_put to transfer the data at least 2 atomic swaps were needed to send
a protocol message, one to lock and one to unlock the queue.

Several different protocols were used to implement the point to point com-
munications depending on the size of the message.

! An earlier version of this paper was presented at the 6th European SGI/Cray MPP
workshop Manchester, UK 7-8 September 2000.

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 80-83, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Optimising the MPI Library for the T3E 81

— T Very small messages (< 3 words) were packed into the protocol message.

— Tn Medium sized messages were packed into several contiguous queue slots.

— RTA In the Request Transfer Acknowledge protocol the sending processor
sends a request to the receiver. When the receiver matches this send to a
receive it uses shmem_get to fetch the data and sends an acknowledge back
to the sender. RTA had a higher latency than Tn but better bandwidth due
to fewer memory copies so it was used for larger messages.

— RAT The Request Acknowledge Transfer protocol introduced an additional
protocol message but allowed data to be sent using shmem_put which had
better performance than shmem_get on the T3D. However unless the send
was synchronous (e.g. MPI_Ssend) extra memory copies were needed so this
mode was only used in special cases.

2 T3E Optimisations

The T3D MPI library was ported to the T3E almost without change. The hard-
ware differences of the two machines were hidden behind the SHMEM interface.
The MPI communication bandwidth is determined by the SHMEM put/get
bandwidth so there was little scope for improving this. However the message
latency was improved by making protocol messaging more efficient. The T3E
communication hardware is quite different to that of the T3D, in addition to
capabilities needed to implement SHMEM there is direct hardware support for
message queues. These queues are very similar to the protocol queue used by
MPI. The only major difference is that the packet size is 8 words (64 bytes)
instead of 4. Messages are atomically inserted into the remote queue so no locks
are required. No routines were provided by Cray to access these functions so it
was necessary to write two additional custom routines to send and receive using
the hardware message queues®. These were then integrated into the MPI library
by modifying two macros in the code:

1. PUTP This sent a protocol message to a remote processor.
2. BC_ABSORB This processed any incoming protocol messages in the queue.

The RAT protocol was introduced to take advantage of the better shmem_put
performance on the T3D. This was only used for large messages where the impact
of the additional protocol messages is small so it was retained where convenient
to do so. The Tn protocol cannot be implemented with the hardware messaging
and was removed completely.

The following results were generated using the MPICH mpptest program|2].
All runs were performed on 8 processors of the 344 PE T3E-900 at EPCC using
MPI standard sends. Message buffering was suppressed by setting the environ-
ment variable MPP_BUFFER_MAX=0.

For large messages (16 Kb and above) performance can be fit to a straight
line and the asymptotic latency from these fits has been reduced from 51 to 12
microseconds.

2 Thanks to David Tanqueray of Cray-UK for assistance with this.

82 Stephen Booth

The behaviour for short messages is shown in Figure 1; again message latency
has been significantly reduced. This is especially true for very short messages
using the T protocol where the latency is almost the same as for a SHMEM
operation. As the protocol messages are larger up to 7 words of data can now be
sent using the T protocol. This graph also shows an improved message bandwidth
because for the larger message sizes on this graph the new version is using the
RTA protocol instead of Tn which required an additional memory copy.

Short message performance

Time /microseconds

—— New
—=— Original

0 200 400 600 800 1000 1200
Message size /bytes

Fig. 1. Short message performance

This figure shows the performance of short messages for the two versions of the library.

The MPI standard mandates that point to point messages must continue to
progress while a processor is blocked in a MPI_Barrier call. On the T3D this
prevented the use of the hardware barrier. On the T3E the Barrier hardware
can be polled. This allows global MPI barriers to utilise the barrier hardware for
barriers across MPI_COMM_WORLD or other global communicators. This increased
performance of global barriers is shown in Figure 2. This benefit increases as a
larger number of processors are used.

All of the above optimisations are incorporated in the Cray MPT release
1.3.0.5 or above.

Optimising the MPI Library for the T3E 83

40 | | |

L MPI_Barrier times]

Time/microseconds

Processors

Fig. 2. Global barrier performance

This figure shows the time taken to complete a global barrier as a function of the
number of processors being synchronised.

3 Conclusion

By dropping below the SHMEM interface, significant performance improvements
have been made to the MPI library. This should improve the performance of any
application code that makes extensive use of global MPI barriers or is sensitive
to MPI message latency.

References

1. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard
June 1995 http://www.mpi-forum.org/ 80

2. W. Gropp, E. Lusk, N. Doss, A. Skjellum: A high-performance, portable imple-
mentation of the MPI message passing interface standard, Parallel Computing 22
789-828 September 1996. 81

3. R. Barriuso, A. Knies: SHMEM User’s Guide for C., Cray Research Inc., August
1994.

4. K. Cameron, L. Clarke, A. Smith: “CRI/EPCC MPI for CRAY T3D”, 1st Euro-
pean Cray T3D Workshop, EPFL, 6 September 1995. 80

	Optimising the MPI Library for the T3E
	Implementation of the MPI Library
	T3E Optimisations
	Conclusion

