Skip to main content

The Complexity of Tensor Circuit Evaluation

Extended Abstract

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2001 (MFCS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2136))

Abstract

The study of tensor calculus over semirings in terms of complexity theory was initiated by Damm et al. in [8]. Here we first look at tensor circuits, a natural generalization of tensor formulas; we show that the problem of asking whether the output of such circuits is non-zero is complete for the class NE = NTIME(2o(n)) for circuits over the boolean semiring, ⊕E for the field \( \mathbb{F}_2 \), and analogous results for other semirings. Common sense restrictions such as imposing a logarithmic upper bound on circuit depth are also discussed. Second, we analyze other natural problems concerning tensor formulas and circuits over various semirings, such as asking whether the output matrix is diagonal or a null matrix.

Supported by the Québec FCAR, by the NSERC of Canada, and by the DFG of Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. L. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity I. Texts in Theoretical Computer Science. Springer Verlag, 1995.

    Google Scholar 

  2. D. A. Mix Barrington. Bounded-width polynomial size branching programs recognize exactly those languages in NC1. Journal of Computer and System Sciences, 38:150–164, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. A. Mix Barrington and D. Thérien. Finite monoids and the fine structure of NC1. Journal of the Association of Computing Machinery, 35:941–952, 1988.

    Google Scholar 

  4. A. Blass and Y. Gurevich. On the unique satisfiability problem. Information and Control, 82:80–88, 1982.

    Article  MathSciNet  Google Scholar 

  5. G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel. Structure and importance of logspace MOD-classes. Mathematical Systems Theory, 25:223–237, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. R. Buss. The Boolean formula value problem is in ALOGTIME. In Proceedings of the 19th Symposium on Theory of Computing, pages 123–131. ACM Press, 1987.

    Google Scholar 

  7. S. R. Buss, S. Cook, A. Gupta, and V. Ramachandran. An optimal parallel algorithm for formula evaluation. SI AM Journal on Computing, 21(4):755–780, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  8. C. Damm, M. Holzer, and P. McKenzie. The complexity of tensor calculus. In Proceedings of the 15th Conference on Computational Complexity, pages 70–86. IEEE Computer Society Press, 2000.

    Google Scholar 

  9. L. Fortnow. One complexity theorist’s view of quantum computing. In Electronic Notes in Theoretical Computer Science, volume 31. Elsevier, 2000.

    Google Scholar 

  10. L. Hemachandra. The strong exponential hierarchy collapses. Journal of Computer and System Sciences, 39(3):299–322, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  11. N. D. Jones and W. T. Laaser. Complete problems for deterministic polynomial time. Theoretical Computer Science, 3:105–117, 1976.

    Article  MathSciNet  Google Scholar 

  12. W. Kuich and A. Salomaa. Semirings, Automata, Languages, volume 5 of EATCS Monographs on Theoretical Computer Science. Springer, 1986.

    Google Scholar 

  13. C. H. Papadimitriou and M. Yannakakis. The complexity of facets (and some facets of complexity). Journal of Computer and System Sciences, 28(2):244–259, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  14. W.-H. Steeb. Kronecker Product of Matrices and Applications. Wissenschaftsverlag, Mannheim, 1991.

    Google Scholar 

  15. R. Tolimieri, M. An, and Ch. Lu. Algorithms for Discrete Fourier Transform and Convolution. Springer Verlag, 1997.

    Google Scholar 

  16. L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8:189–201, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  17. V. Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In Proceedings of the 6th Structure in Complexity Theory, pages 270–284. IEEE Computer Society Press, 1991.

    Google Scholar 

  18. C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Computer Science, 3:23–33, 1977.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beaudry, M., Holzer, M. (2001). The Complexity of Tensor Circuit Evaluation. In: Sgall, J., Pultr, A., Kolman, P. (eds) Mathematical Foundations of Computer Science 2001. MFCS 2001. Lecture Notes in Computer Science, vol 2136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44683-4_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-44683-4_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42496-3

  • Online ISBN: 978-3-540-44683-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics