Skip to main content

The k-Median Problem for Directed Trees

Extended Abstract

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2001 (MFCS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2136))

Abstract

The k-median problem is a classical facility location problem. We consider the k-median problem for directed trees, motivated by the problem of locating proxies on the World Wide Web. The two main results of the paper are an O(n log n) time algorithm for k=2 and an O(n log2 n) time algorithm for k=3. The previously known upper bounds for these two cases were O(n 2).

Research supported by grant EPSRC GR/N09077 (UK). M.Chrobak was also partially supported by by NSF grant CCR-9988360. W.Rytter was also partially supported by grant KBN 8T11C03915.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Aggarwal, M. M. Klawe, S. Moran, and R. Wilber. Geometric applications of a matrix-searching algorithm. Algorithmica, 2:195–208, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Arora, P. Raghavan, and S. Rao. Approximation schemes for euclidean k-medians and related problems. In Proc. 30th Annual ACM Symposium on Theory of Computing (STOC’98), pages 106–113, 1998.

    Google Scholar 

  3. V. Auletta, D. Parente, and G. Persiano. Dynamic and static algorithms for optimal placement of resources in a tree. Theoretical Computer Science, 165:441–461, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  4. V. Auletta, D. Parente, and G. Persiano. Placing resources on a growing line. Journal of Algorithms, 26:87–100, 1998.

    MATH  MathSciNet  Google Scholar 

  5. M. Charikar and S. Guha. Improved combinatorial algorithms for facility location and k-median problems. In Proc. 40th Symposium on Foundations of Computer Science (FOCS’99), pages 378–388, 1999.

    Google Scholar 

  6. M. Charikar, S. Guha, E. Tardos, and D. Shmoys. A constant-factor approximation algorithm for the k-median problem. In Proc. 31st Annual ACM Symposium on Theory of Computing (STOC’99), 1999.

    Google Scholar 

  7. H. Davenport and A. Schinzel. A combinatorial problem connected with differential equations. American J. Math., 87:684–694, 1965.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. R. Garey and D. S. Johnson. Computers and Intractability: a Guide to the Theory of NP-completeness. W. H. Freeman and Co., 1979.

    Google Scholar 

  9. R. Gavish and S. Sridhar. Computing the 2-median on tree networks in O(n log n) time. Networks, 26:305–317, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. H. Halldorson, K. Iwano, N. Katoh, and T. Tokuyama. Finding subsets maximizing minimum structures. In Proc. 6th Annual Symposium on Discrete Algorithms (SODA’ 95), pages 150–157, 1995.

    Google Scholar 

  11. R. Hassin and A. Tamir. Improved complexity bounds for location problems on the real line. Operation Research Letters, 10:395–402, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  12. W. L. Hsu. The distance-domination numbers of trees. Operation Research Letters, 1:96–100, 1982.

    Article  MATH  Google Scholar 

  13. O. Kariv and S. L. Hakimi. An algorithmic approach to network location problems II: The p-medians. SIAM Journal on Applied Mathematics, 37:539–560, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Analysis of a local search heuristic for facility location problems. Journal of Algorithms, 37:146–188, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  15. B. Li, X. Deng, M. Golin, and K. Sohraby. On the optimal placement of web proxies on the Internet: linear topology. In Proc. 8th IFIP Conference on High Peformance Netwworking (HPN’98), pages 00–00, 1998.

    Google Scholar 

  16. B. Li, M. J. Golin, G. F. Italiano, X. Deng, and K. Sohraby. On the optimal placement of web proxies in the Internet. In IEEE InfoComm’99, pages 1282–1290, 1999.

    Google Scholar 

  17. M. Sharir and P. K. Agarwal. Davenport-Schinzel sequences and their geometric applications. Cambridge University Press, 1995.

    Google Scholar 

  18. A. Tamir. An O(pn 2) algorithm for the p-median and related problems on tree graphs. Operations Research Letters, 19:59–64, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Vigneron, L. Gao, M. Golin, G. Italiano, and B. Li. An algorithm for finding a k-median in a directed tree. Information Processing Letters, 74:81–88, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  20. G. Woeginger. Monge strikes again: optimal placement of web proxies in the Internet. Operations Research Letters, 27:93–96, 2000.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chrobak, M., Larmore, L.L., Rytter, W. (2001). The k-Median Problem for Directed Trees. In: Sgall, J., Pultr, A., Kolman, P. (eds) Mathematical Foundations of Computer Science 2001. MFCS 2001. Lecture Notes in Computer Science, vol 2136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44683-4_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-44683-4_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42496-3

  • Online ISBN: 978-3-540-44683-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics