Skip to main content

Fast PNN Using Partial Distortion Search

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2124))

Included in the following conference series:

  • 1326 Accesses

Abstract

Pairwise nearest neighbor method (PNN), in its exact form, provides good quality codebooks for vector quantization but at the cost of high run time. We consider the utilization of the partial distortion search technique in order to reduce the workload caused by the distance calculations in the PNN. By experiments, we show that the simple improvement reduces the run time down to 50–60%

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gersho, A. and Gray, R.M.: Vector Quantization and Signal Compression. Kluwer Academic Publishers, Dordrecht (1992)

    MATH  Google Scholar 

  2. Equitz, W.H.: A new vector quantization clustering algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37 (1989) 1568–1575

    Article  Google Scholar 

  3. Linde, Y., Buzo, A. and Gray, R.M.: An Algorithm for Vector Quantizer Design. IEEE Transactions on Communications, 28 (1980) 84–95

    Article  Google Scholar 

  4. de Garrido, D.P., Pearlman, W.A. and Finamore, W.A.: A clustering algorithm for entropy-constrained vector quantizer design with applications in coding image pyramids. IEEE Transactions on Circuits and Systems for Video Technology, 5 (1995) 83–95

    Article  Google Scholar 

  5. Kaukoranta, T., Franti, P. and Nevalainen, O.: Iterative split-and-merge algorithm for VQ codebook generation. Optical Engineering, 37 (1998) 2726–2732

    Article  Google Scholar 

  6. Franti, P., Kivijarvi, J., Kaukoranta, T. and Nevalainen, O.: Genetic algorithms for large scale clustering problem. The Computer Journal, 40 (1997) 547–554

    Article  Google Scholar 

  7. Shanbehzadeh, J. and Ogunbona, P.O.: On the computational complexity of the LBG and PNN algorithms. IEEE Transactions on Image Processing 6 (1997) 614–616

    Article  Google Scholar 

  8. Franti, P., Kaukoranta, T., Shen D.-F. and Chang, K.-S.: Fast and memory efficient implementation of the exact PNN. IEEE Transactions on Image Processing, 9 (2000) 773–777

    Article  Google Scholar 

  9. Bei, C.-D. and Gray, R.M.: An improvement of the minimum distortion encoding algorithm for vector quantization. IEEE Transactions on Communications, 33 (1985) 1132–1133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Virmajoki, O., Fränti, P., Kaukoranta, T. (2001). Fast PNN Using Partial Distortion Search. In: Skarbek, W. (eds) Computer Analysis of Images and Patterns. CAIP 2001. Lecture Notes in Computer Science, vol 2124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44692-3_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-44692-3_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42513-7

  • Online ISBN: 978-3-540-44692-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics