Skip to main content

Length Estimation for Curves with ε-Uniform Sampling

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2124))

Included in the following conference series:

Abstract

This paper discusses the problem of how to approximate the length of a parametric curve γ: [0, T] → ℝn from points q i =γ(t i), where the parameters t i are not given. Of course, it is necessary to make some assumptions about the distribution of the t i: in the present paper ε-uniformity. Our theoretical result concerns an algorithm which uses piecewise-quadratic interpolants. Experiments are conducted to show that our theoretical estimates are sharp, and that the assumption of ε-uniformity is needed. This work may be of interest in computer graphics, approximation and complexity theory, digital and computational geometry, and digital image processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barsky, B.A., DeRose, T.D.: Geometric Continuity of Parametric Curves: Three Equivalent Characterizations. IEEE. Comp. Graph. Appl. 9:6 (1989) 60–68

    Article  Google Scholar 

  2. Boehm, W., Farin, G., Kahmann, J.: A Survey of Curve and Surface Methods in CAGD. Comput. Aid. Geom. Des. 1 (1988) 1–60

    Article  Google Scholar 

  3. Bülow, T., Klette, R.: Rubber Band Algorithm for Estimating the Length of Digitized Space-Curves. In: Sneliu, A., Villanva, V.V., Vanrell, M., Alquézar, R., Crow-ley. J., Shirai, Y. (eds): Proceedings of 15th International Conference on Pattern Recognition. Barcelona, Spain. IEEE, Vol. III. (2000) 551–555

    Google Scholar 

  4. Davis, P.J.: Interpolation and Approximation. Dover Pub. Inc., New York (1975)

    MATH  Google Scholar 

  5. Dçabrowska, D., Kowalski, M.A.: Approximating Band-and Energy-Limited Signals in the Presence of Noise. J. Complexity 14 (1998) 557–570

    Article  MathSciNet  Google Scholar 

  6. Dorst, L., Smeulders, A.W.M.: Discrete Straight Line Segments: Parameters, Primitives and Properties. In: Melter, R., Bhattacharya, P., Rosenfeld, A. (eds): Ser. Contemp. Maths, Vol. 119. Amer. Math. Soc. (1991) 45–62

    Google Scholar 

  7. Epstein, M.P.: On the Influence of Parametrization in Parametric Interpolation. SIAM. J. Numer. Anal. 13:2 (1976) 261–268

    Article  MATH  MathSciNet  Google Scholar 

  8. Hoschek, J.: Intrinsic Parametrization for Approximation. Comput. Aid. Geom. Des. 5 (1988) 27–31

    Article  MATH  MathSciNet  Google Scholar 

  9. Klette, R.: Approximation and Representation of 3D Objects. In: Klette, R., Rosenfeld, A., Sloboda, F. (eds): Advances in Digital and Computational Geometry. Springer, Singapore (1998) 161–194

    Google Scholar 

  10. Klette, R., Bülow, T.: Critical Edges in Simple Cube-Curves. In: Borgefors, G., Nyström, I., Sanniti di Baja, G. (eds): Proceedings of 9th Conference on Discrete Geometry for Computer Imagery. Uppsala, Sweden. Lecture Notes in Computer Science, Vol. 1953. Springer-Verlag, Berlin Heidelberg (2000) 467–478

    Chapter  Google Scholar 

  11. Klette, R., Kovalevsky, V., Yip, B.: On the Length Estimation of Digital Curves. In: Latecki, L.J., Melter, R.A., Mount, D.A., Wu, A.Y. (eds): Proceedings of SPIE Conference, Vision Geometry VIII, Vol. 3811. Denver, USA. The International Society for Optical Engineering (1999) 52–63

    Google Scholar 

  12. Klette, R., Yip, B.: The Length of Digital Curves. Machine Graphics and Vision 9 (2000) 673–703

    Google Scholar 

  13. Moran, P.A.P.: Measuring the Length of a Curve. Biometrika 53:3/4 (1966) 359–364

    Article  MATH  MathSciNet  Google Scholar 

  14. Noakes, L., Kozera, R.: More-or-Less Uniform Sampling and Lengths of Curves. Quart. Appl. Maths. In press

    Google Scholar 

  15. Noakes, L., Kozera, R., and Klette R.: Length Estimation for Curves with Different Samplings. In: Bertrand, G., Imiya, A., Klette, R. (eds): Digital and Image Geometry. Submitted

    Google Scholar 

  16. Piegl, L., Tiller, W.: The NURBS Book. 2nd edn Springer-Verlag, Berlin Heidelberg (1997)

    Google Scholar 

  17. Pitas, I.: Digital Image Processing Algorithms and Applications. John Wiley & Sons Inc., New York Chichester Weinheim Brisbane Singapore Toronto (2000)

    Google Scholar 

  18. Plaskota, L.: Noisy Information and Computational Complexity. Cambridge Uni. Press, Cambridge (1996)

    MATH  Google Scholar 

  19. Sederberg, T.W., Zhao, J., Zundel, A.K.: Approximate Parametrization of Algebraic Curves. In: Strasser, W., Seidel, H.P. (eds): Theory and Practice in Geometric Modelling. Springer-Verlag, Berlin (1989) 33–54

    Google Scholar 

  20. Sloboda, F., Zaťko, B., Stör, J.: On approximation of Planar One-Dimensional Continua. In: Klette, R., Rosenfeld, A., Sloboda, F. (eds): Advances in Digital and Computational Geometry. Springer, Singapore (1998) 113–160

    Google Scholar 

  21. Steinhaus, H.: Praxis der Rektifikation und zur Längenbegriff. (in German) Akad. Wiss. Leipzig Ber. 82 (1930) 120–130

    Google Scholar 

  22. Traub, J.F., Werschulz, A.G.: Complexity and Information. Cambridge Uni. Press, Cambridge (1998)

    MATH  Google Scholar 

  23. Werschulz, A.G., Woźniakowski, H.: What is the Complexity of Surface Integration? J. Complexity. In press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Noakes, L., Kozera, R., Klette, R. (2001). Length Estimation for Curves with ε-Uniform Sampling. In: Skarbek, W. (eds) Computer Analysis of Images and Patterns. CAIP 2001. Lecture Notes in Computer Science, vol 2124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44692-3_63

Download citation

  • DOI: https://doi.org/10.1007/3-540-44692-3_63

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42513-7

  • Online ISBN: 978-3-540-44692-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics