Abstract
It is known that random k-SAT instances with at least cn clauses where c = c k is a suitable constant are unsatisfiable (with high probability). We consider the problem to certify efficiently the unsatis- fiability of such formulas. A result of Beame et al. shows that k-SAT instances with at least n k-1= log n clauses can be certified unsatisfiable in polynomial time. We employ spectral methods to improve on this: We present a polynomial time algorithm which certifies random k-SAT instances for k even with at least 2k . (k/2)7 . (ln n)7 . n k/2 = n (k/2)+o(1) clauses as unsatisfiable (with high probability).
Partially supported by a USA-Israeli BSF grant.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dimitris Achlioptas. Setting 2 variables at a time yields a new lower bound for random 3-SAT. In Proceedings SToC 2000, ACM.
Dimitris Achlioptas, Ehud Friedgut. A threshold for random k-colourability. Random Structures and Algorithms 1999.
Dimitris Achlioptas, Mike Molloy. Analysis of a list colouring algorithm on a random graph. In Proceedings FoCS 1997, IEEE.
Dimitris Achlioptas, Mike Molloy. Almost all graphs with 2.522n edges are not 3-colourable. Undated manuscript.
Noga Alon, Nabil Kahale. A spectral technique for colouring random 3-colourable graphs (preliminary version). In Proceedings 26th SToC,1994, ACM, 346–355.
Noga Alon, Joel H. Spencer. The Probabilistic Method. Wiley & Sons Inc., 1992.
Paul Beame, Richard Karp, Toniann Pitassi, Michael Saks. On the complexity of unsatisfiability proofs for random k-CNF formulas. In Proceedings 30th SToC,1998, ACM, 561–571.
Paul Beame, Toniann Pitassi. Simplified and improved resolution lower bounds. In Proceedings 37th FoCS,1996, IEEE, 274–282.
Bela Bollobas. Random Graphs. Academic Press, 1985.
Manuel Blum, Richard Karp, Oliver Vornberger, Christos H. Papadimitriou, Mihalis Yannakakis. The complexity of testing whether a graph is a superconcentrator. Information Processing Letters 13, 1981, 164–167.
Fan R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.
Vasek Chvatal, Bruce Reed. Mick gets some (the odds are on his side). In Proceedings 33nd FoCS,1992, IEEE, 620–627.
Vasek Chvatal, Endre Szemeredi. Many hard examples for resolution. Journal of the ACM 35(4), 1988, 759–768.
J. M. Crawford, L. D. Auton. Experimental results on the crossover point in random 3-SAT. Artificial Intelligence 81, 1996.
Olivier Dubois, Yacine Boufkhad, Jacques Mandler. Typical random 3-SAT formulae and the satisfiability threshold. In Proceedings SoDA 2000, SIAM.
Paul E. Dunne, Michele Zito. An improved upper bound for the non-3-colourability threshold. Information Processing Letters 1998.
Xudong Fu. The complexity of the resolution proofs for the random set of clauses. Computational Complexity 1998.
Ehud Friedgut. Necessary and suficient conditions for sharp thresholds of graph properties and the k-SAT problem. Journal of the American Mathematical Society 12, 1999, 1017–1054.
Alan M. Frieze, Stephen Suen. Analysis of two simple heuristics on a random instance of k-SAT. Journal of Algorithms 20(2), 1996, 312–355.
Z. Furedi, J. Komlos. The eigenvalues of random symmetric matrices. Combinatorica 1(3), 1981, 233–241.
Andreas Goerdt. A threshold for unsatisfiability. Journal of Computer and System Sciences 53, 1996, 469–486.
Russel Impagliazzo, Moni Naor. Efficient cryptographic schemes provably as secure as subset sum. Journal of Cryptology 9, 1996, 199–216.
Ferenc Juhasz. The asymptotic behaviour of Lovasz theta function for random graphs. Combinatorica 2(2), 1982, 153–155.
Michael Krivelevich, Van H. Vu. Approximating the independence number and the chromatic number in expected polynomial time. In Proceedings ICALP 2000, LNCS 1853, 13–24.
Lefteris M. Kirousis, Evangelos Kranakis, Danny Krizanc, Yiannis Stamatiou. Approximating the unsatisfiability threshold of random formulas. Random Structures and Algorithms 12(3), 1998, 253–269.
A. D. Petford, Dominic Welsh. A Randomised 3-colouring algorithm. Discrete Mathematics 74, 1989, 253–261.
Bart Selman, David G. Mitchell, Hector J. Levesque. Generating hard satisfiability problems. Artificial Intelligence 81(1-2), 1996, 17–29.
Gilbert Strang. Linear Algebra and its Applications. Harcourt Brace Jovanovich, Publishers, San Diego, 1988.
J. H. van Lint, R. M. Wilson. A Course in Combinatorics. Cambridge University Press, 1992.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Goerdt, A., Krivelevich, M. (2001). Efficient Recognition of Random Unsatisfiable k-SAT Instances by Spectral Methods. In: Ferreira, A., Reichel, H. (eds) STACS 2001. STACS 2001. Lecture Notes in Computer Science, vol 2010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44693-1_26
Download citation
DOI: https://doi.org/10.1007/3-540-44693-1_26
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41695-1
Online ISBN: 978-3-540-44693-4
eBook Packages: Springer Book Archive