Skip to main content

Efficient Minimal Perfect Hashing in Nearly Minimal Space

  • Conference paper
  • First Online:
STACS 2001 (STACS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2010))

Included in the following conference series:

Abstract

We consider the following problem: Given a subset S of size n of a universe {0, … ,u-1}, construct a minimal perfect hash function for S, i.e., a bijection h from S to {0, … ,n-1}. The parameters of interest are the space needed to store h, its evaluation time, and the time required to compute h from S. The number of bits needed for the representation of h, ignoring the other parameters, has been thoroughly studied and is known to be n log e + log log u ± O(log n), where “log” denotes the binary logarithm. A construction by Schmidt and Siegel uses O(n + log logu) bits and offers constant evaluation time, but the time to find h is not discussed. We present a simple randomized scheme that uses n log e+log log u+o(n+log log u) bits and has constant evaluation time and O(n + log log u) expected construction time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. L. Carter and M. N. Wegman, Universal Classes of Hash Functions, J. Comput. System Sci. 18 (1979), pp. 143–154.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Dietzfelbinger and F. Meyer auf der Heide, A new universal class of hash functions and dynamic hashing in real time, Proc. 17th International Colloquium on Automata, Languages and Programming (ICALP 1990), Lecture Notes in Computer Science, Vol. 443, Springer-Verlag, Berlin, pp. 6–19.

    Chapter  Google Scholar 

  3. M. L. Fredman and J. Komlós, On the size of separating systems and families of perfect hash functions, SIAM J. Alg. Disc. Meth. 5 (1984), pp. 61–68.

    Article  MATH  Google Scholar 

  4. M. L. Fredman, J. Komlós and E. Szemerédi, Storing a sparse table with O(1) worst case access time, J. ACM 31 (1984), pp. 538–544.

    Article  MATH  Google Scholar 

  5. T. Hagerup, Sorting and searching on the word RAM, Proc. 15th Annual Symposium on Theoretical Aspects of Computer Science (STACS 1998), Lecture Notes in Computer Science, Vol. 1373, Springer-Verlag, Berlin, pp. 366–398.

    Google Scholar 

  6. M. Hofri, Probabilistic Analysis of Algorithms, Springer-Verlag, New York, 1987.

    MATH  Google Scholar 

  7. C. P. Kruskal, L. Rudolph and M. Snir, A complexity theory of efficient parallel algorithms, Theoret. Comput. Sci. 71, (1990), pp. 95–132.

    Article  MATH  MathSciNet  Google Scholar 

  8. K. Mehlhorn, Data Structures and Algorithms, Vol. 1: Sorting and Searching, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  9. M. O. Rabin, Probabilistic algorithm for testing primality. J. Number Theory 12, (1980), pp. 128–138.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Radhakrishnan, Improved bounds for covering complete uniform hypergraphs, Inform. Process. Lett. 41 (1992), pp. 203–207.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. P. Schmidt and A. Siegel, The spatial complexity of oblivious k-probe hash functions, SIAM J. Comput. 19 (1990), pp. 775–786.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Siegel, On universal classes of fast high performance hash functions, their timespace tradeoff, and their applications, Proc. 30th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1989), pp. 20–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hagerup, T., Tholey, T. (2001). Efficient Minimal Perfect Hashing in Nearly Minimal Space. In: Ferreira, A., Reichel, H. (eds) STACS 2001. STACS 2001. Lecture Notes in Computer Science, vol 2010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44693-1_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-44693-1_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41695-1

  • Online ISBN: 978-3-540-44693-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics