Skip to main content

A Model Theoretic Proof of Büchi-Type Theorems and First-Order Logic for N-Free Pomsets

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2010))

Abstract

We give a uniform proof for the recognizability of sets of fi- nite words, traces, or N-free pomsets that are axiomatized in monadic second order logic. This proof method uses Shelah’s composition theorem for bounded theories. Using this method, we can also show that elemen- tarily axiomatizable sets are aperiodic. In the second part of the paper, it is shown that width-bounded and aperiodic sets of N-free pomsets are elementarily axiomatizable.

New address: Department of Mathematics and Computer Science, University of Leicester, Leicester, LE1 7RH, UK, email: D.Kuske@mcs.le.ac.uk.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Courcelle. The monadic second-order logic of graphs. I: Recognizable sets of finite graphs. Information and Computation, 85:12–75, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  2. B. Courcelle and J.A. Makowsky. VR and HR graph grammars: A common algebraic framework compatible with monadic second order logic. In Graph transformations, 2000. cf. http://tfs.cs.tu-berlin.de/gratra2000/proceedings.html.

  3. J. Doner. Tree acceptors and some of their applications. J. Comput. Syst. Sci., 4:406–451, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Droste and P. Gastin. Asynchronous cellular automata for pomsets without autoconcurrency. In CONCUR’96, Lecture Notes in Comp. Science vol. 1119, pages 627–638. Springer, 1996.

    Google Scholar 

  5. M. Droste and D. Kuske. Logical definability of recognizable and aperiodic languages in concurrency monoids. In Computer Science Logic, Lecture Notes in Comp. Science vol. 1092, pages 467–478. Springer, 1996.

    Google Scholar 

  6. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1991.

    Google Scholar 

  7. W. Ebinger and A. Muscholl. Logical definability on infinite traces. Theoretical Comp. Science, 154:67–84, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  8. J.L. Gischer. The equational theory of pomsets. Theoretical Comp. Science, 61:199–224, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. Gurevich. Modest theory of short chains I. J. of Symb. Logic, 44:481–490, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. Kuske. Asynchronous cellular automata and asynchronous automata for pomsets. In CONCUR’98, Lecture Notes in Comp. Science vol. 1466, pages 517–532. Springer, 1998.

    Google Scholar 

  11. D. Kuske. Infinite series-rational posets: logic and languages. In ICALP 2000, Lecture Notes in Comp. Science vol. 1853, pages 648–662. Springer, 2000.

    Google Scholar 

  12. R.E. Ladner. Application of model theoretic games to discrete linear orders and finite automata. Information and Control, 33:281–303, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  13. K. Lodaya and P. Weil. Series-parallel languages and the bounded-width property. Theoretical Comp. Science, 237:347–380, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. McNaughton and S. Papert. Counter-Free Automata. MIT Press, Cambridge, MA, 1971.

    MATH  Google Scholar 

  15. M.P. Schützenberger. On finite monoids having only trivial subgroups. Inf. Control, 8, 1965.

    Google Scholar 

  16. S. Shelah. The monadic theory of order. Annals of Mathematics, 102:379–419, 1975.

    Article  MathSciNet  Google Scholar 

  17. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, pages 133–191. Elsevier Science Publ. B.V., 1990.

    Google Scholar 

  18. W. Thomas. On logical definability of trace languages. In V. Diekert, editor, Proceedings of a workshop of the ESPRIT BRA No 3166: Algebraic and Syntactic Methods in Computer Science (ASMICS) 1989, Report TUM-I9002, Technical University of Munich, pages 172–182, 1990.

    Google Scholar 

  19. W. Thomas. Ehrenfeucht games, the composition method, and the monadic theory of ordinal words. In J. Mycielski et al., editor, Structures in Logic and Computer Science, A Selection of Essays in Honor of A. Ehrenfeucht, Lecture Notes in Comp. Science vol. 1261, pages 118–143. Springer, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuske, D. (2001). A Model Theoretic Proof of Büchi-Type Theorems and First-Order Logic for N-Free Pomsets. In: Ferreira, A., Reichel, H. (eds) STACS 2001. STACS 2001. Lecture Notes in Computer Science, vol 2010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44693-1_39

Download citation

  • DOI: https://doi.org/10.1007/3-540-44693-1_39

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41695-1

  • Online ISBN: 978-3-540-44693-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics