Skip to main content

Star-Free Open Languages and Aperiodic Loops

  • Conference paper
  • First Online:
STACS 2001 (STACS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2010))

Included in the following conference series:

Abstract

It is known that recognition of regular languages by finite monoids can be generalized to context-free languages and finite groupoids, which are finite sets closed under a binary operation. A loop is a groupoid with a neutral element and in which each element has a left and a right inverse. It has been shown that finite loops recognize exactly those regular languages that are open in the group topology. In this paper, we study the class of aperiodic loops, which are those loops that contain no nontrivial group. We show that this class is stable under various definitions, and we prove some closure properties. We also prove that aperiodic loops recognize only star-free open languages and give some examples. Finally, we show that the wreath product principle can be applied to groupoids, and we use it to prove a decomposition theorem for recognizers of regular open languages.

Work supported by NSERC (Canada) and FCAR (Québec). The last author is also supported by the von Humboldt foundation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M Ajtai, 1 1-formulae on finite structures, Annals of Pure and Applied Logic, 24 pp.1–48, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  2. A.A. Albert, Quasigroups. I, Trans. Amer. Math. Soc., Vol. 54 (1943) pp.507–519.

    Article  MATH  MathSciNet  Google Scholar 

  3. A.A. Albert, Quasigroups. II, Trans. Amer. Math. Soc., Vol. 55 (1944) pp.401–419.

    Article  MATH  MathSciNet  Google Scholar 

  4. D.A. Barrington, Bounded-Width Polynomial-Size Branching Programs Recognize Exactly those Languages in NC1, JCSS 38,1 (1989), pp. 150–164.

    MATH  MathSciNet  Google Scholar 

  5. D. Barrington and D. Thérien, Finite Monoids and the Fine Structure of NC1, JACM 35,4 (1988), pp. 941–952.

    Article  Google Scholar 

  6. P.W. Beam, S. A. Cook, and H. J. Hoover, Log Depth Circuits for Division and Related Problems, in Proc. of the 25th IEEE Symp. on the Foundations of Computer Science (1984), pp. 1–6.

    Google Scholar 

  7. M. Beaudry, Languages recognized by finite aperiodic groupoids, Theoretical Computer Science, vol. 209, 1998, pp. 299–317.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Beaudry, Finite idempotent groupoids and regular languages, Theoretical Informatics and Applications, vol. 32, 1998, pp. 127–140.

    MathSciNet  Google Scholar 

  9. M. Beaudry, F. Lemieux, and D. Thérien, Finite loops recognize exactly the regular open languages, in Proc. of the 24th International Colloquium on Automata, Languages and Programming, Springer Lecture Notes in Comp. Sci. 1256 (1997), pp. 110–120.

    Google Scholar 

  10. F. Bédard, F. Lemieux and P. McKenzie, Extensions to Barrington’s M-program model, TCS 107 (1993), pp. 31–61.

    Article  MATH  Google Scholar 

  11. R.H. Bruck, Contributions to the Theory of Loops, Trans. AMS, (60) 1946 pp.245–354.

    Article  MATH  MathSciNet  Google Scholar 

  12. R.H. Bruck, A Survey of Binary Systems, Springer-Verlag, 1966.

    Google Scholar 

  13. H. Caussinus and F. Lemieux, The Complexity of Computing over Quasigroups, In the Proceedings of the 14th annual FST&TCS Conference, LNCS 1256, Springer-Verlag 1994, pp.36–47.

    Google Scholar 

  14. O. Chein, H. O. Pfugfelder, and J. D. H. Smith, Quasigroups and Loops: Theory and Applications, Helderman Verlag Berlin, 1990.

    Google Scholar 

  15. S.A. Cook, A Taxonomy of Problems with Fast Parallel Algorithms, Information and Computation 64 (1985), pp. 2–22.

    MATH  Google Scholar 

  16. S. Eilenberg, Automata, Languages and Machines, Academic Press, Vol. B, (1976).

    Google Scholar 

  17. M.L. Furst, J.B. Saxe and M. Sipser, Parity, Circuits, and the Polynomial-Time Hierarchy, Proc. of the 22nd IEEE Symp. on the Foundations of Computer Science (1981), pp. 260–270. Journal version Math. Systems Theory 17 (1984), pp. 13-27.

    Google Scholar 

  18. F. Lemieux, Complexité, langages hors-contextes et structures algebriques non-associatives, Masters Thesis, Université de Montréal, 1990.

    Google Scholar 

  19. F. Lemieux, Finite Groupoids and their Applications to Computational Complexity, Ph.D. Thesis, McGill University, May 1996.

    Google Scholar 

  20. C. Moore, F. Lemieux, D. Thérien, J. Berman, and A. Drisko, Circuits and Ex-pressions with Nonassociative Gates, JCSS 60 (2000) pp.368–394.

    MATH  Google Scholar 

  21. A. Muscholl, Characterizations of LOG, LOGDCFL and NP based on groupoid programs, Manuscript, 1992.

    Google Scholar 

  22. H. O. Pfugfelder, Quasigroups and Loops: Introduction, Heldermann Verlag, 1990.

    Google Scholar 

  23. J.-E. Pin, Variétés de languages formels, Masson (1984). Also Varieties of Formal Languages, Plenum Press, New York, 1986.

    Google Scholar 

  24. J.-E. Pin, On Reversible Automata, in Proceedings of the first LATIN Conference, Sao-Paulo, Notes in Computer Science 583, Springer Verlag, 1992, 401–416

    Google Scholar 

  25. J.-E. Pin, Polynomial closure of group languages and open set of the Hall topology, Theoretical Computer Science 169 (1996) 185–200

    Article  MATH  MathSciNet  Google Scholar 

  26. J.E. Savage, The complexity of computing, Wiley, 1976.

    Google Scholar 

  27. M.P. Schützenberger, On Finite Monoids having only trivial subgroups, Information and Control 8 (1965), pp. 190–194.

    Article  MATH  MathSciNet  Google Scholar 

  28. I. Simon, Piecewise testable Events, Proc. 2nd GI Conf., LNCS 33, Springer, pp. 214–222, 1975.

    Google Scholar 

  29. H. Venkateswaran, Circuit definitions of nondeterministic complexity classes, Proceedings of the 8th annual FST&TCS Conference, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beaudry, M., Lemieux, F., Thérien3, D. (2001). Star-Free Open Languages and Aperiodic Loops. In: Ferreira, A., Reichel, H. (eds) STACS 2001. STACS 2001. Lecture Notes in Computer Science, vol 2010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44693-1_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-44693-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41695-1

  • Online ISBN: 978-3-540-44693-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics