Abstract
We prove a lower bound of 5/2n 2-3n for the multiplicative complexity of n × n-matrix multiplication over arbitrary fields. More general, we show that for any finite dimensional semisimple algebra A with unity, the multiplicative complexity of the multiplication in A is bounded from below by 5/2 dim A - 3(n 1 + ⋯ + n t) if the decomposition of A ≅= A1 x ... x At into simple algebras Aτ ≅ Dτnτ×nτ contains only noncommutative factors, that is, the division algebra Dτ is noncommutative or nτ ≥ 2.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. Alder and V. Strassen. On the algorithmic complexity of associative algebras. Theoret. Comput. Sci., 15:201–211, 1981.
Dario Bini, Milvio Capovani, Grazia Lotti, and Francesco Romani. O(n 2:7799) complexity for matrix multiplication. Inf. Proc. Letters, 8:234–235, 1979.
Markus Bläser. A 5/2n 2lower bound for the rank of nxnmatrix multiplication over arbitrary fields. In Proc. 40th Ann. IEEE Symp. on Found. Comput. Sci. (FOCS), pages 45–50, 1999.
Markus Bläser. Lower bounds for the multiplicative complexity of matrix multiplication. Comput. Complexity, 8:203–226, 1999.
Markus Bläser. Untere Schranken für den Rang assoziativer Algebren. Dissertation, Universität Bonn, 1999.
Markus Bläser. Lower bounds for the bilinear complexity of associative algebras. Comput. Complexity, to appear.
Roger W. Brockett and David Dobkin. On the optimal evaluation of a set of bilinear forms. Lin. Alg. Appl., 19:207–235, 1978.
Nader H. Bshouty. A lower bound for matrix multiplication. SIAM J. Comput., 18:759–765, 1989.
Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi. Algebraic Complexity Theory. Springer, 1997.
Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progression. J. Symbolic Comput., 9:251–280, 1990.
Yurij A. Drozd and Vladimir V. Kirichenko. Finite Dimensional Algebras. Springer, 1994.
Hans F. de Groote. Characterization of division algebras of minimal rank and the structure of their algorithm varieties. SIAM J. Comput., 12:101–117, 1983.
Hans F. de Groote. Lectures on the Complexity of Bilinear Problems. LNCS 245. Springer, 1986.
Joseph Ja’Ja’. On the complexity of bilinear forms with commutativity. SIAM J. Comput., 9:717–738, 1980.
Jean-Claude Lafon and Shmuel Winograd. A lower bound for the multiplicative complexity of the product of two matrices. Technical report, Centre de Calcul de L’Esplanade, U.E.R. de Mathematique, Univ. Louis Pasteur, Strasbourg, France, 1978.
Victor Yu. Pan. Methods for computing values of polynomials. Russ. Math. Surv., 21:105–136, 1966.
Richard S. Pierce. Associative Algebras. Springer, 1982.
Arnold Schönhage. Partial and total matrix multiplication. SIAM J. Comput., 10:434–455, 1981.
Volker Strassen. Gaussian elimination is not optimal. Num. Math., 13:354–356, 1969.
Volker Strassen. Vermeidung von Divisionen. J. Reine Angew. Math., 264:184–202, 1973.
Volker Strassen. Rank and optimal computation of generic tensors. Lin. Alg. Appl., 52/53:645–685, 1983.
Volker Strassen. Relative bilinear complexity and matrix multiplication. J. Reine Angew. Math., 375/376:406–443, 1987.
Volker Strassen. Algebraic complexity theory. In J. van Leeuven, editor, Handbook of Theoretical Computer Science Vol. A, pages 634–672. Elsevier Science Publishers B.V., 1990.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bläser, M. (2001). A 5/2n 2-Lower Bound for the Multiplicative Complexity of n × n-Matrix Multiplication. In: Ferreira, A., Reichel, H. (eds) STACS 2001. STACS 2001. Lecture Notes in Computer Science, vol 2010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44693-1_9
Download citation
DOI: https://doi.org/10.1007/3-540-44693-1_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41695-1
Online ISBN: 978-3-540-44693-4
eBook Packages: Springer Book Archive