A Bit-Serial Unified Multiplier Architecture
for Finite Fields GF(p) and GF(2™)

Johann Grofischadl

Graz University of Technology
Institute for Applied Information Processing and Communications
Inffeldgasse 16a, A-8010 Graz, Austria
Johann.Groszschaedl@iaik.at

Abstract. The performance of elliptic curve cryptosystems is primarily
determined by an efficient implementation of the arithmetic operations
in the underlying finite field. This paper presents a hardware architec-
ture for a unified multiplier which operates in two types of finite fields:
GF(p) and GF(2™). In both cases, the multiplication of field elements is
performed by accumulation of partial-products to an intermediate result
according to an MSB-first shift-and-add method. The reduction modulo
the prime p (or the irreducible polynomial p(t), respectively) is inter-
leaved with the addition steps by repeated subtractions of 2p and/or p
(or p(t), respectively). A bit-serial multiplier executes a multiplication
in GF(p) in approximately 1.5-[log,(p)] clock cycles, and the multipli-
cation in GF(2™) takes exactly m clock cycles. The unified multiplier
requires only slightly more area than that of the multiplier for prime
fields GF(p). Moreover, it is shown that the proposed architecture is
highly regular and simple to design.

Keywords: Elliptic curve cryptography, finite field arithmetic, iterative
modulo multiplication, polynomial basis representation, bit-serial multi-
plier architecture, smart card crypto-coprocessor.

1 Introduction

In the mid-eighties, N. Koblitz [9] and V. S. Miller [16] independently proposed
using the group of points on an elliptic curve (EC) over a finite field in discrete
logarithm cryptosystems. Elliptic curve cryptography can be used to provide
digital signature schemes, encryption schemes, and key agreement schemes [10].
The primary advantage of elliptic curve systems over systems based on the mul-
tiplicative group of a finite field is the absence of a subexponential-time algo-
rithm that could solve the discrete logarithm problem (DLP) in these groups [3].
Consequently, an elliptic curve group that is smaller in size can be used, while
maintaining the same level of security [13]. The result is smaller key sizes, band-
width savings, and faster implementations. These features make elliptic curve
cryptosystems especially attractive for applications in environments where com-
putational power is limited, such as smart cards or hand-held devices.

C.K. Kog, D. Naccache, and C. Paar (Eds.): CHES 2001, LNCS 2162, pp. 202-B19] 2001.
(© Springer-Verlag Berlin Heidelberg 2001

A Unified Multiplier for GF(p) and GF(2™) 203

The performance of an elliptic curve cryptosystem is primarily determined
by the efficient realization of the arithmetic operations (addition, multiplication,
and inversion) in the underlying finite field. Many practical implementations use
projective coordinates [15] to represent points on the elliptic curve because they
allow to perform a point addition/doubling without inversion. Therefore, copro-
cessors for elliptic curve cryptography are most frequently designed to accelerate
the field multiplication.

1.1 Motivation for a Unified Multiplier Architecture

An elliptic curve can be defined over various mathematical structures such as
a ring or field. In cryptography only finite fields are used because they allow
to store and handle the field elements in a manageable way. Due to standard-
ization activities, two special types of finite fields have become very important
for the implementation of elliptic curve cryptosystems: The prime field GF(p)
and the binary extension field GF(2™). Various accredited standards bodies like
the National Institute of Standards and Technology (NIST) recommended to use
either GF(p) or GF(2™) as the underlying finite field [19]. In order to promote
interoperability between different implementations and to facilitate widespread
use of well-accepted techniques, a crypto-coprocessor should operate in both
types of finite fields. Therefore, it is an obvious idea to develop a unified mul-
tiplier architecture which can perform multiplications in GF(p) and GF(2™).
At a first glance, prime fields and binary extension fields seem to have dissimi-
lar properties. However, the elements of either field can be represented using a
bit-string. Furthermore, the arithmetic operations in both fields have structural
similarities allowing a unified design. For example, a multiplication in GF(p) is
performed modulo a prime p, and the multiplication in GF(2™) is done modulo
an irreducible polynomial p(t) if polynomial basis representation is used.

1.2 Previous Work

In August 2000, E. Savas et al. introduced a unified multiplier which operates
in both types of finite fields, GF(p) and GF(2™) [23]. From an algorithmic point
of view, the multiplication in GF(p) is performed according to Montgomery’s
method [I7]. The introduction of the Montgomery multiplication for the field
GF(2™) in [11] opened them up the possibility to develop a unified multiplier
architecture by taking advantage of the fact that the Montgomery multiplication
is in both fields essentially the same operation. Their implementation utilizes
inherent concurrency in Montgomery multiplication and uses an array of word-
size processing units organized in a pipeline. Savag’ architecture is highly scalable
because a fixed-area multiplier can handle operands of any size. Moreover, the
word-size of a processing unit as well as the number of pipeline stages can be
selected according to the desired area/performance trade-off.

Another interesting VLSI implementation was reported by J. Goodman et
al. [6]. Their so-called Domain Specific Reconfigurable Cryptographic Processor
(DSRCP) provides a full suite of arithmetic operations (including inversion) over

204 J. Grof3schadl

the integers modulo p, binary extension fields, and non-supersingular elliptic
curves over GF(2™), with operands ranging in size from 8 to 1024 bits. These
operations are implemented using a single computation unit whose datapath cells
can be reconfigured on the fly. The modulo multiplication is realized according
to an iterated radix-2 version of Montgomery multiplication. On the other hand,
the multiplication in GF(2™) is based on an iterated MSB-first approach.

1.3 Owur Contribution

We introduce a multiplier architecture for unified (dual-field) arithmetic. The
modulo multiplication proceeds in a serial-parallel fashion according to an it-
erative approach, which means that the modulo reduction is performed during
multiplication through concurrent reduction of the intermediate result.

The main contribution of this paper is a modification of the classical MSB-
first version for iterative modulo multiplication that allows a very efficient hard-
ware implementation. Additionally, we propose a bit-serial architecture using
carry-save adders for the accumulation of partial-products to an intermediate
result given in a redundant representation. The modulo reduction operation is
interleaved with the partial-product additions by repeated subtractions of once
or twice the modulus. The circuit to decide the multiple of the modulus to be
subtracted is very simple and requires only the two highest order bits of the re-
dundant intermediate result as inputs. Contrary to other designs, the subtrahend
evaluation circuit of our multiplier does not cause a significant critical path.

We will show that the bit-serial multiplier can also perform multiplications
in GF(2™) by simply setting all carry-bits of the intermediate result to 0. The
area-cost of the unified multiplier is only slightly higher than that of the mul-
tiplier for the field GF(p), providing significant area savings when both types
of multiplier are needed. To the best of our knowledge, an MSB-first bit-serial
architecture for multiplication in GF(p) and GF(2™) has never been published
before. Compared to the Montgomery multiplication used in Savag’ implemen-
tation, the MSB-first iterative algorithm requires neither a transformation of
operands into Montgomery domain nor precomputed constants. The bit-serial
architecture has a linear array structure with a bit-slice feature. A high degree of
regularity and mainly local connections make the multiplier simple to design.

1.4 Paper Outline

The remainder of this paper is organized as follows: Section [2 provides some
background information on MSB-first techniques for radix-2 multiplication with
interleaved reduction. Section[3 presents a modified version of the classical “shift-
and-add” algorithm for modulo multiplication. The modified algorithm uses a
redundant representation of the intermediate result and profits from a novel quo-
tient estimation technique which is detailed in subsection Bl Section Hl covers
arithmetic in binary extension fields GF(2™) using a polynomial basis represen-
tation. The unified multiplier architecture for GF(p) and GF(2™) is introduced
in section [B. This section also describes the execution of a multiplication and

A Unified Multiplier for GF(p) and GF(2™) 205

presents an estimation of the computation time for both types of finite fields.
The paper finishes with a summary of results and conclusions in section [6l

2 Preliminaries

The finite field GF(p), also denoted as prime field of order p, is the field of residue
classes modulo p, where the field elements are the integers 0,1,...,p—1. The
field operations are modulo operations, i.e., addition and multiplication modulo
the prime p. Beside the popular Montgomery multiplication [I7] and the Barret
modulo reduction method [1], also binary and higher-radix algorithms for MSB-
first iterative modulo multiplication have been proposed.

2.1 MSB-First Iterative Modulo Multiplication

A usual way of multiplying two integers A and B is done by scanning the mul-
tiplier B one bit at a time, beginning with the most significant bit (MSB), and
accumulating the partial-product A-B[i] to the intermediate result. The product
P is a 2n-bit integer if the operands are n bits long and can be written as

P:A-B:A~<7§B[i] 2i> :S(A.B[i])zi (1)
=0 1=0

The notation X[i] indicates the i-th bit of an n-bit integer X; X[0] is the LSB,
and X[n—1] is the MSB. After each addition of a partial-product, the inter-
mediate result must be multiplied by 2 to align it to the next partial-product.
Since a multiplication by 2 is a 1-bit left-shift in hardware, the described method
is also known as shift-and-add multiplication. The shift-and-add multiplication
typically results in a bit-serial architecture when implemented in hardware. Bit-
serial multipliers offer a fair area/performance trade-off, which is an important
aspect in the design of coprocessors for area-restricted devices like smart cards.

INPUT: An n-bit modulus M (i.e., 2" ' < M <2™), a
multiplicand A < M, and a multiplier B < M.
OuTpPUT: Result R = A-B mod M.

R+ 0

for i from n — 1 downto 0 do
R+ 2-R+ A-BJi]
q « |R/M]
R+ R—qM

endfor

Fig. 1: MSB-first shift-and-add multiplication with interleaved modulo reduction.

206 J. Grof3schadl

Figure [1 shows that the simple shift-and-add multiplication can be easily
extended to perform a modulo multiplication. The modulo reduction of the in-
termediate result R is interleaved with the addition steps and realized by sub-
traction of the product q- M, whereby ¢ is the quotient of R and the modulus M.
The quotient g can be at most 2 since the term 2- R+ A-BJi] is always smaller
than three times the modulus M (on condition that A < M):

q= U}J with ¢ € {0,1,2} (2)

Therefore, the reduction of the intermediate result can be accomplished by sub-
traction of M or 2-M (i.e., addition of the two’s complement of M or 2-M).
However, two serious problems arise when implementing this algorithm:

1. Addition of long integers can cause a significant delay due to carry propa-
gation from LSB to MSB, which limits the clock frequency.

2. The exact comparison of the intermediate result R to the modulus M in
order to decide whether the quotient ¢ is 0, 1 or 2 is also difficult to perform
for very long integers.

Various papers on the efficient implementation of MSB-first modulo multi-
plication can be found in literature. An algorithm published by G. R. Blakley
realizes the reduction of the intermediate result by one or two subtractions of
the modulus [4]. E. F. Brickell presented an architecture which performs a multi-
plication of two integers modulo p in [logy(p)]+7 clock cycles [5]. This approach
uses delayed carry adders to avoid the carry propagation delay, but has problems
due to the difficulty of comparing long integers and conversion of the result from
delayed carry representation to binary representation. C. D. Walter proposed
another technique for speeding up modulo multiplication by scaling the modu-
lus [26]. The modulus is scaled in such a way that a certain number of the most
significant digits are fixed, resulting in a simplified reduction operation. How-
ever, the cost of this method is precalculation and storage of the scaled modulus.
Y.-J. Jeong et al. presented an architecture for iterative modulo multiplication
that performs the quotient estimation by table lookups [8]. Their design also
requires storage of some precalculated complements of the modulus, resulting
in an increase in needed resources. The partial-parallel multiplier introduced by
H. Orup et al. contains a quotient estimation circuit that estimates the 12 high-
est order bits of the redundant partial sum, and then chooses an appropriate
multiple of the modulus to be subtracted [20]. The most significant drawback of
Orup’s architecture is a long critical path introduced by the quotient estimation
circuit, which limits the clock frequency. Higher-radix methods for MSB-first
iterative modulo multiplication have been reported in [12/[18/24]25].

2.2 Carry-Save Adders

The carry propagation in long integer addition is easily eliminated by the im-
plementation of a carry-save adder (CSA). Carry-save adders are widely used

A Unified Multiplier for GF(p) and GF(2™) 207

in arithmetic circuits due to their performance in terms of speed and silicon
area [21]. An n-bit CSA consists of n full-adders (FA), and solves the carry
propagation problem by using a redundant representation for the result (i.e., the
carries are saved). This means that the result is not a single binary number, but
is represented by two n-bit numbers instead: Rg (the sum bits) and R¢ (the
carry bits). The delay of a carry-save adder is constant (i.e., independent of the
length of the operands) and only determined by the delay of a single full-adder.
In many applications, the sum output Rg and the carry output R¢ are latched
or registered, either for synchronization purposes or for pipelining.

X[3] S[3] C[3] X[2] S[2] C[2] X[1] S[1] C[1] X[O] S[O] C[O]

v ‘) v b .) v b ‘) v b ‘)
Cout «+— FA FA FA FA Cin
v V/ v V/ v V/ v (

Rs[3] Rc[3] Rs[2] Rc[2] Rs[1] Re[1] Rs[0] Rcl[0]

Fig. 2: Block diagram of a 4-bit carry-save adder.

Figure Rlillustrates a 4-bit carry-save adder. The basic principle of the carry-
save addition is to reduce the sum of three binary numbers S, C, X to the
sum of two binary numbers Rg, Rc without carry propagation according to the
following equations:

Rsli] = S[i] ® C[i] ® X[i] (3)
Reli+1] = S[i)-Cli] + S[i]- X[i] + C[i]-X[i] with Rc[0] = Cin=0 (4)

Note that the operators in the previous equations are logical operators and not
arithmetic operators. When using carry-save adders, the intermediate result R
is not a single binary number anymore, but is given in a redundant represen-
tation as a sum and carry pair (Rg, Rc) instead, whereby Rg denotes the sum
part of the result, and Rc the carry part, respectively. Carry-save adders are
advantageous if many subsequent additions have to be performed.

3 Optimized MSB-First Iterative Modulo Multiplication

The major hindrance of the bit-serial architectures for modulo multiplication
described in subsection [ZT]is that they either require a costly quotient evaluation
circuit or a circuit for performing comparisons of long integers. These circuits
cause significant additional hardware and may limit the clock frequency due
to a long critical path. Furthermore, some of the mentioned implementations
need a large amount of storage for precomputed multiples of the modulus. If
the modulus is to be dynamic, the stored modulus multiples must be updated
whenever the modulus is changed.

208 J. Grof3schadl

INPUT: An n-bit modulus M (i.e., 2" < M < 2"), a multiplicand A in the
range of 0 < A < 2", and a multiplier B in the range of 0 < B < 2".
OuTpPUT: The result R in the range of 0 < R < 2™. R is possibly not fully
reduced, i.e., R = A-B mod M + k-M with k € {0, 1}.
1: (Rs, Rc) «— 0
2: for i from n — 1 downto 0 do
3: (Rs,Rc) < 2-(Rs, Rc) + A-BlJi]
4: while (Rs, Rc) >2.2" do (Rs, Rc) +— (Rs,Rc) —2-M
5: while (Rs,Rc) > 2" do (Rs,Rc) — (Rs,Rc) - M
6: endfor
7. R< Rs+ Rc {red. to non-red. conversion }
8: if R > 2" then
9: (Rs,Rc)«~ R—M
10: R <+ Rs+ Rc { red. to non-red. conversion }
11: endif

Fig. 3: Optimized version of the MSB-first iterative modulo multiplication.

The most crucial operation of the classical MSB-first algorithm for iterative
modulo multiplication is the calculation of the quotient ¢, which is the same as
to decide whether the current intermediate result is smaller than M (and conse-
quently ¢ = 0), or bigger than M (and consequently ¢ = 1), or bigger than 2-M
(and consequently ¢ = 2). This decision is difficult for long integers because an
n-bit modulus M can vary between its minimum value M,,;, of 2"~ ! and its
maximum value M, ., of 2" — 1:

2L <M < 2" = My =2""1and Mye, = 2" — 1 (5)

Additionally, a redundant representation of the intermediate result does not
make this task easier. An efficient solution for this problem is to compare the
redundant intermediate result to 2 and to 2-2" instead of the exact values of
M and 2-M, since these comparisons are simpler to implement in hardware, as
will be demonstrated in subsection B.1].

Figure B shows a modified version of the shift-and-add multiplication which
is optimized for hardware implementation. The intermediate result is written in
redundant representation (Rg, R¢) to indicate that the additions and subtrac-
tions should be performed by carry-save adders. Another interesting detail of the
modified algorithm is the fact that the modulo reduction is not carried out “at
once”, but is split into continued subtractions of 2- M and/or M. The subtraction
of M and 2-M can be realized by addition of the two’s complement of M, and
by addition of the 1-bit left-shifted two’s complement of M, respectively. When
using a carry-save adder for the two’s complement addition, the subtraction is
performed in constant time. During a modulo multiplication the intermediate re-
sult is always in redundant representation. After the last multiplier bit B[0] has
been processed, the result must be converted from redundant into non-redundant
representation. This conversion can be performed by a pipelined carry-lookahead

A Unified Multiplier for GF(p) and GF(2™) 209

Table 1: Redundant number estimations. Rs and Rc are both (n+1)-bit numbers,
Rs(n] is the MSB of Rg, and R¢n] is the MSB of Rc.

’ Rsn] ‘ Rc(n] ‘ Rs[n—1] ‘Rc [n—1] H Rs + Re¢ ‘ Estimation ‘
0 0 0 0 Rs+Rc < 2"t 427
0 0 0 1 Rs+Rc < 242" | (Rs,Rc) < 3-2™
0 0 1 0 Rs+Rc < 2" +2™
0 0 1 1 Rs+Rc > 27" 427!
0 1 X X Rs+Rc > 2" (Rs,Rc) > 2"
1 0 X X Rs+Rc > 2"
1 1 X X Rs+Rg > 2" +2" (Rs,Rc) > 22"

adder (see section B). If the non-redundant result R is bigger than 27, one final
subtraction of M is necessary to bound the result within the range of [0,2"). It
must be emphasized, however, that the operands A and B do not need to be fully
reduced, but they must be smaller than 2™ to ensure that the algorithm works
correctly. A remaining problem is the comparison of the redundant intermediate
result to 2-2™ and 2™, respectively. In the next subsection we present an efficient
solution for this problem by applying a special estimation technique.

3.1 Redundant Number Estimation

The modified algorithm in figure [3] requires a comparison of the intermediate
result to 2-2™ and 2" to decide whether or not a subtraction of 2- M or M has to
be performed. For hardware implementation, this is a significant improvement
over the first algorithm because it avoids the necessity for an exact comparison
between the intermediate result and the modulus. Furthermore, the comparison
to 2-2" and 2" can be easily realized by a novel estimation technique, in the
following denoted as redundant number estimation.

Table [shows a simplified logical truth-table to decide the two inequalities
(Rs,Rc) > 2™ and (Rgs, R¢) > 2-2™. For decision of the first inequality, only
the two most significant bits of Rg and Rc need to be scanned, and for the
second inequality only the MSB of Rg and R, respectively. Note that Rg and
R¢ are both (n+1)-bit numbers, consequently the MSB of Rg is Rg[n], and the
MSB of R¢ is Rc¢[n]. The hardware to decide the multiple of the modulus to be
subtracted can be defined by the following two logical equations:

subl = Rg[n] + Re[n] + (Rg[n—1] - Ra[n—1]) (6)
sub2 = Rg[n] - Re[n) (7)

If subl = 0, then the intermediate result (Rg, Rc) is smaller than 3-2"~! and
consequently also smaller than 3-M. This estimation is correct for any value
of M according to equation (B), even for M = M,,;,. On the other hand, if
subl =1, the intermediate result is bigger than 2", and consequently it can be

210 J. Grof3schadl

estimated to be also bigger than M. Therefore, at least one subtraction of M is
necessary, even if M = M,qz-

For any n-bit modulus M satisfying 2"~! < M < 2", the redundant number
estimations observed from table [I] can be summarized as follows:

subl =0 and sub2 =0 = (Rs,Rc) <3-M (8)
subl =1 and sub2 =0 = (Rs,Rc) > M (9)
sub2 =1 = (Rg,Rc) >2-M (10)

The optimized MSB-first algorithm illustrated in figure [3] compares the in-
termediate result (Rg, Rc) to 2-2" and 2" instead of the actual values 2-M
and M. For this reason, it is possible that the intermediate result is not always
fully reduced. But if the comparisons are performed according to the presented
redundant number estimations, the algorithm guarantees that the intermediate
result is always smaller than three times the modulus (i.e., smaller than 3-2"~1)
before the next multiplier bit B[] is processed. This is valid for any modulus M
which satisfies equation (B), even for M = M.

After each addition of a partial-product, the modulo reduction is accom-
plished by continued subtractions of 2-M and M. Of course this raises the
question how many subtractions of 2- M and/or M will be (at most) necessary.
Because the redundant number estimation guarantees that the intermediate re-
sult (Rg, Rc) is smaller than 3-2"~1 before the quantity 2-(Rs, Rc) + A-Bi]
is computed, the product 2-(Rg, R¢) is always smaller than 6-2"~L. Since the
partial-product A-B[i] is smaller than 2™ it is proven that the intermediate re-
sult is smaller than 8-2"~! before beginning the modulo reduction. Thus, for
any modulus M satisfying equation (H), at most three subtractions of 2-M or M
are necessary until (Rg, Rc) is smaller than 3-27~1. On the other hand, a more
precise quotient evaluation would reduce the number of subtractions. However,
the proposed method benefits from the fact that the redundant number estima-
tion does not cause a significant critical path and that no multiples of M need
to be precomputed and stored.

4 Arithmetic in Binary Extension Fields GF(2™)

The elements of GF(2™) are polynomials of degree less than m, with coefficients
in GF(2). For example, if a(t) is an element in GF(2™), then one can have

m—1
a(t) = Z a;it’ = am 1t 4 Fagt? art+ap with a; € {0,1} (11)
i=0

This binary polynomial can also be written in bit-string form as Ajm—1..0],
whereby A[i] corresponds to the coefficient a;. Finite fields of characteristic 2
are attractive for hardware implementation due to their “carry-free” arithmetic.
The addition in GF(2™) is implemented as component-wise exclusive OR (XOR),
whilst the implementation of the multiplication depends on the basis chosen [I4].

A Unified Multiplier for GF(p) and GF(2™) 211

INPUT: An irreducible polynomial p(t) of degree m, a multipli-
cand-polynomial a(t), and a multiplier-polynomial b(t).
OuTtpuT: Result-polynomial r(¢) = a(t)-b(t) mod p(t).

1. r(t)«0

2: for ¢ from m — 1 downto 0 do

3: r(t) < t-r(t) + a(t)-bs

4 if degree(r(t)) = m then r(t) < r(t) — p(¢)
5: endfor

Fig.4: MSB-first iterative multiplication in GF(2™).

The simplest representation is in polynomial basis, where the multiplication is
performed modulo an irreducible polynomial of degree exactly m.

A bit-serial polynomial basis multiplier for GF(2™) has an area complexity of
O(m) and computes a multiplication in m clock cycles. They have been well
known since the early 1970s due to their exploration in coding theory [22], and
later they have also been proposed for use in cryptography [2]. A recent pub-
lication reports a bit-serial architecture which is able to perform additions and
multiplications over a variety of binary fields up to an order of 2™ [7].

4.1 Addition

The addition in GF(2™) is performed by adding the coefficients modulo 2, which
is nothing else than bit-wise XOR-ing the coefficients of equal powers of t. Com-
pared to the addition of integers, the addition in GF(2") is much easier as it does
not cause carry propagation. It is well known that in the field GF(2™) any ele-
ment a(t) is its own additive inverse since a(t) + a(t) = 0, the additive identity.
Consequently, addition and subtraction are equivalent operations in GF(2™).

4.2 Multiplication

Multiplication in GF(2™) involves multiplying the two polynomials together
(carry-free coefficient multiplication) and then finding the residue modulo a given
irreducible polynomial p(¢). In general, the reduction modulo an irreducible poly-
nomial p(t) requires polynomial division. For an efficient implementation it is
necessary to perform the field multiplication without polynomial division. One
possibility is to interleave the reduction modulo p(t) with the multiplication
operation, instead of performing the reduction separately after the multiplica-
tion of the polynomials is finished. This leads to a characteristic 2 version of
the shift-and-add method, where the multiplication is realized by addition of
partial-products, and the reduction is performed by subtraction of the irreducible
polynomial. The pseudocode illustrated in figure @] describes this algorithm.
The multiplication of two polynomials a(t),b(t) € GF(2™) modulo an irre-
ducible polynomial p(t) is done by scanning the coefficients of the multiplier-
polynomial b(t) from b,,—1 to by and adding the partial-product a(t)-b; to the

212 J. Grof3schadl

intermediate result r(t). The partial-product a(t)-b; is either 0 (if b; = 0) or
the multiplicand-polynomial a(t) (if b; = 1). After each partial-product addi-
tion, the intermediate result must be multiplied by ¢ to align it for the next
partial-product. The reduction modulo the irreducible polynomial p(t) is inter-
leaved with the partial-product additions by subtraction of p(t) if the degree of
the intermediate result is m, i.e., if the coefficient r,, is 1. It turns out that the
computation of r(t) = a(t)-b(t) mod p(t) requires m steps, and at each step we
perform the following operations:

— computation of t-r(¢) (a 1-bit left-shift)

— generation of a partial-product (logical AND between b; and a(t))
— addition of the partial-product (an (m+1)-bit XOR operation)

— generation of the subtrahend (logical AND between 7, and p(t))
— subtraction of the subtrahend (an (m+1)-bit XOR operation)

The required logical operations are AND, XOR, and 1-bit left-shifts, which makes
a hardware implementation of this algorithm very straightforward.

5 Multiplier Architecture

When taking a closer look at the multiplication algorithms for GF(p) (figure B)
and for GF(2™) (figure), it is easily observed that these algorithms have some
similarities. In both algorithms, one operand (the multiplier) is scheduled bit by
bit, beginning with the MSB, and the other operand (the multiplicand) is sched-
uled fully parallel. Both algorithms perform three basic operations: Addition of
partial-products, 1-bit left-shifts of the intermediate result, and subtraction(s)
of the modulus (or the irreducible polynomial, respectively). The main difference
is the way how the addition or subtraction is performed. An addition in GF(p)
involves addition of integers and can be performed by carry-save adders, using
a redundant representation for the result. On the other hand, the addition in
GF(2™) is a simple logical XOR, operation.

5.1 Implementation of the Field Arithmetic

Figure [l illustrates an arithmetic unit for implementation of the field additions
and subtractions, respectively. All carry-save additions have to be performed
with (n+1)-bit precision. The sum output Rg and the carry output R¢ of the
adders are latched on each half-cycle for synchronization purposes. Note that the
circuit for generation of the partial-product as well as the circuit for generation
of the subtrahend are not shown in figure [Bl

A subtraction is usually performed by adding the two’s complement of the
subtrahend S, which can be realized in our case by addition of the bitwise com-
plement of S and setting the initial carry Cin to 1. Therefore, addition and
subtraction are essentially the same operation. It must be emphasized that the
MSB-first algorithm from figure B guarantees that the intermediate result will
never become negative, i.e., the Cout output of the carry-save adders can be

A Unified Multiplier for GF(p) and GF(2™) 213

3 Rs Rc I A-B[i]
(n+1)-bit Carry-Save Adder [«— Cin=0

LR | Re

(n+1)-bit Sum and Carry Latch

k-bit hard-
wired left-shift == Rs Rc O jM,je {0,-1,-2}
ke {0,1}
(n+1)-bit Carry-Save Adder |«— Cin = subl + sub2
l Rs l Rc
phi (n+1)-bit Sum and Carry Latch

v v
Rs Rc

Fig.5: Arithmetic unit of an n-bit unified multiplier.

ignored. In the following we describe how this arithmetic unit can be used to
implement a modulo multiplication. Later in this section it will be shown that
the arithmetic unit can also perform the addition/subtraction in GF(2™).
According to the MSB-first iterative algorithm for modulo multiplication,
the processing of a multiplier bit B[i] takes place in the following way: The
first carry-save adder at the top of figure Bl performs the addition of the partial-
product A-BJi] to the current intermediate result. The sum output Rg and
the carry output R¢ of the first CSA are used to estimate the multiple of the
modulus to become subtracted at the second CSA. This estimation is performed
as described in section B.1], and only the two highest order bits of Rg and R¢ are
needed to implement the logical functions of equation (@) and (7). Therefore, the
hardware to decide whether to subtract 0-M, 1-M or 2-M can be implemented
very efficiently and will not cause a long critical path in the arithmetic unit.
The subtraction of M or 2-M is realized by addition of the two’s complement
of M or 2- M to the output of the first CSA, which takes place at the second CSA.
But one subtraction of 2-M or M may not be enough to guarantee that the
intermediate result is within the range of [0, 3-2"~1). Therefore, a control signal
xsub is generated according to equation (@) in order to decide whether or not an
extra subtraction of M or 2-M is necessary. If an extra subtraction is required,
the outputs Rg and R¢ of the second CSA are fed back to the first (upper) CSA
(without a left-shift). For an extra subtraction, the multiplier bit B[] must be
masked off, so that no partial-product (i.e., zero) is added at the first CSA. After
that, the extra subtraction of M or 2-M takes place again at the second CSA.
If no extra subtraction is required, the processing of the multiplier bit is
finished. The outputs of the second CSA are fed back to the inputs of the first
CSA with a 1-bit hardwired left-shift. Rg and R¢ are now correctly aligned for

214 J. Grof3schadl

addition of the next partial-product and the same procedure starts again. After
the last multiplier bit has been processed, the sum and carry of the second CSA
represent the redundant result (Rg, R¢) of the modulo multiplication.

Generation of the partial-product. The partial-product A-BJi] is either 0
(if B[i] is 0), or the multiplicand A (if B[i] is 1). Thus, the generation of the
partial-product A- B[i] is simply done by a bit-wise AND operation between the
multiplier bit B[i] and all the bits of the multiplicand A.

Generation of the subtrahend. The subtrahend S = j-M,j € {0,—1, -2}
must be generated according to the requirements of the optimized MSB-first
algorithm. In the presented arithmetic unit the subtraction of S is realized by
addition of the bitwise complement of S and by setting the initial carry Cin of
the CSA to 1. The control signals sub! and sub2 introduced in sectionBIlindicate
whether the subtrahend S has to be 0, M, or 2-M, and they can be used for
generating the subtrahend-bits S[i] according to the following equations:

Sli] = subl - sub2 - M[i] + sub2 - M[i—1] for i=1...n (12)

S[0] = subl - sub2 - M[0] + sub2 (13)

Performing addition/subtraction in GF(2™). The sum bit Rg[i] of a full-
adder calculates the logical XOR of its three inputs (see equation (3))). By setting
all carry bits of the adders to 0, the sum outputs Rg[i] of the adders provide the
functionality of a 2-input XOR gate. This is exactly the functionality required
for addition/subtraction in GF(2™). Also the partial-products are generated
in exactly the same way as described before, namely by a logical AND of the
coefficient B[i] and all the coefficientd of the multiplicand polynomial a(t). A
reduction of the intermediate result is necessary whenever the degree of the
result-polynomial is m, i.e., if Rg[m] is 1. The requirement for a subtraction
of the irreducible polynomial p(t) is indicated by the control signal subi, since
subl = Rg[m] if the carry bits R¢[i] are set to O:

subl = Rg[m]+ 0+ (Rg[m—1]-0) = Rg[m] and sub2 = Rg[m]-0=0

The control signal sub2 is always 0. As mentioned in subsection 2, the gen-
eration of the subtrahend S is a logical AND between the control signal subi
and the bits of the irreducible polynomial, i.e., S[i] = subl - P[i] = Rg[m] - P[i].
The presented arithmetic unit provides exactly the functionality required for the
multiplication in the binary extension field GF(2™) when the carry bits R¢|i]
are set to 0.

! The algorithm also works with the following control signals: sub! = Rs[n] ® Rc[n],
sub2 = Rs[n]- Rc[n], and zsub = Rs[n]+ Rc[n]+ (Rs[n—1]- Rc[n—1]). In this case
the generation of the subtrahend bits S[i] is simplified to the following equation:
S[i] = subl - M[i] + sub2 - M[i—1].

2 According to the bit-string notation introduced in section BI] the coefficient z; of a
polynomial z(t) is denoted as X[i].

A Unified Multiplier for GF(p) and GF(2™) 215

— Output (w bit)

N

Input (w bit) ——» n-bit I/O Register

< L] Pipelined

Bli] CLA
™ (w bit)

A
\ 4

n-bit Multiplier Register

n-bit Multiplicand Register

A
Y

A

xsub Rs Re A
v

(n+1)-bit Arithmetic Unit
7'y

clear ——

M n-bit Bus

n-bit Modul/IP Register

A
\ 4

Fig. 6: Block diagram of the bit-serial multiplier architecture.

5.2 The Unified Multiplier Architecture

Figure [6] shows the bit-serial multiplier architecture, consisting of the (n+1)-bit
arithmetic unit, four n-bit registers, and a pipelined w-bit carry-lookahead adder
[21], whereby w denotes the wordsize of the registers (usually 8, 16, or 32 bits).
The I/0 Register performs data transfers from and to the world outside the mul-
tiplier. We prefer to provide a seperate register for I/O operations to ensure that
the overall performance of the multiplier is not reduced by slow data transfers.
The Modulus/IP Register is needed to store the bit-string representation of the
modulus or the irreducible polynomial, respectively. Multiplicand and Multiplier
Register are used for storing the current operands of the multiplication. Both
registers can carry out w-bit shift operations in LSB direction, register Mul-
tiplier can additionally perform 1-bit shift operations in MSB direction (1-bit
left-shifts). All four registers are connected through an n-bit bus.

After the operands have been loaded into the corresponding registers, a mod-
ulo multiplication takes place in the following way: The Multiplier register is
shifted bit by bit in MSB direction to deliver the multiplier bits B[n—1] to BJ0]
to the arithmetic unit. The processing of the multiplier bits BJ[i] is performed as
described in subsection Bl The control signal zsub is generated from the two
most significant bits of Rg and R¢ of the second CSA according to equation (@l).
Whenever zsub is 1, the arithmetic unit has to perform an extra subtraction and
register Multiplier must stop the left-shift until zsub = 0. After the least sig-
nificant multiplier bit B[0] has been processed, the redundant result (Rg, R¢)
is loaded into registers Multiplier and Multiplicand, respectively. Note that the
old values of the multiplier and multiplicand are not needed any more. Now the
redundant result must be converted into non-redundant representation. This is
done by the pipelined w-bit carry-lookahead adder (CLA) and requires [n/w]
clock cycles plus the delay of the CLA (usually log,(w) clock cycles). The out-

216 J. Grof3schadl

Table 2: Typical subtraction sequences of 2-M and/or M depending on the range of

(Rs, Rc) after addition of the partial-product.

Range of (Rs, Rc) trari}i]}))jf:(lacjz:gce Clock cycles

0<(Rs,Rc) < 2"t — 1

"~1 <(Rs,Rc) < 2-2" ! — 1
22”1§(R5,Rc)<32”1 — 1
3-2"71 <(Rs,Rc) < 4.2 1 M 1
427" <(Rg,Rc) < 5-2"" 2-M 1
5-2""! <(Rs,Rc) < 6-2"71 2-M, M 2
6-2""! <(Rs,Rc) < 7-2"7! 2-M,2-M 2
7-2"7!' <(Rs,Rc) < 8-2"71 2-M,2-M, M 3

put of the CLA is fed back to the Multiplier register. Since the non-redundant
result may not be in the range of [0,2"), an additional modulus subtraction and
redundant to non-redundant conversion may be necessary. After the modulo
multiplication has finished, the result resides within register Multiplier.

In GF(2™)-mode, a multiplication is performed in a similar way, except that
no extra subtractions and no redundant to non-redundant conversions of the
result are necessary.

5.3 Performance Estimation

Since the carry-save adders are separated by latches, the addition of a partial-
product and the first subtraction of M or 2-M are performed in one clock cycle.
Any extra modulus subtraction requires an additional clock cycle. As stated
in subsection 3] at most three subtractions of 2- M and/or M are necessary
to guarantee that the intermediate result is smaller than 3-M (i.e., 3-2"71).
Therefore, the processing of a single multiplier bit takes at most three clock
cycles. The actual number of cycles depends on the size of the intermediate result
after addition of the partial-product. Table[2 shows typical subtraction sequences
depending on the range of the intermediate result (Rg, R¢). The values at the
third column represent the number of clock cycles required for partial-product
addition and the subtractions. For example, if 6-2" " < (Rg, R¢) < 7-2"! then
typically two subtractions have to be performed. Consequently, two clock cycles
are necessary for the processing of that multiplier bit.

According to the subtraction sequences shown in table[2] one can assume that
any bit of the multiplier takes on average 1.5 clock cycles to be processed. When
given arbitrary n-bit operands, the computation of A-B mod M requires approx-
imately 1.5-n clock cycles. Moreover, one or two redundant to non-redundant
conversions of the result are necessary, each needs [n/w]| + log,(w) clock cycles.
For an (n+1)-bit arithmetic unit and a w-bit CLA, the number of clock cycles

A Unified Multiplier for GF(p) and GF(2™) 217

Table 3: Principal operation characteristics of the unified multiplier.

) Integer GF(p) GF(2™)
Operation add. ‘ mult. add. ‘ mult. add. ‘ mult.
Cycles per bit - 1 - ~ 1.5 - 1
Max. op. length n—1 n/2 n n n n
Operand align right right left left left left

for a modulo multiplication can be estimated as follows:

¢~ 15+ 15 ([2] +logy(w)) ~ 150 (14)
w
This means that a multiplication in the prime field GF(p) requires approximately
1.5-Tlogy(p)] clock cycles. On the other hand, a multiplication in GF(2™) is
finished after m cycles since any bit of the multiplier takes exactly one clock
cycle to be processed.

6 Summary of Results and Conclusions

The subject of this paper was to present a novel bit-serial multiplier architecture
which operates over finite fields GF(p) and GF(2™). A multiplication in GF(p) is
performed in a serial /parallel manner, which means that the multiplier is sched-
uled sequentially (bit by bit) and the multiplicand is scheduled fully parallel.
The modulo reduction is interleaved with the multiplication by subtractions of
once or twice the modulus. Thus, the arithmetic unit has to perform only three
simple operations: Addition of partial-products, left-shift of the intermediate
result, and subtraction of once or twice the modulus. Compared to other bit-
serial multipliers, the proposed architecture profits from an efficient subtrahend
estimation circuit which does not cause a significant critical path. The mod-
ulo multiplier described in this paper is also capable to perform multiplications
in GF(2™), i.e., it is a unified (dual-field) multiplier for GF(p) and GF(2™).
Contrary to architectures which use Montgomery multiplication, the introduced
MSB-first algorithm requires neither operand transformation into Montgomery
domain nor precomputed constants.

The presented design is scalable in size, and an n-bit multiplier operates over
a wide range of finite fields. For example, a multiplier dimensioned for 200 bits
can also be used for fields of smaller order, like 192 or 163 bits, by left-aligning all
operands in the registers. Furthermore, the multiplier can also perform ordinary
integer addition and multiplication, respectively. The operand size for ordinary
integer multiplication is limited to about n/2 bits since the product can’t exceed
n-bit precision. Table Blsummarizes principal characteristics of addition and mul-
tiplication over integers, prime fields GF(p), and binary extension fields GF(2™).

The unified multiplier can be implemented for an area-cost only slightly
higher than that of the multiplier for the prime field GF(p), providing significant

218 J. Grof3schadl

area savings when both types of multiplier are needed. To be more specific, the
overhead introduced by the dual-field arithmetic is just a logic circuit for setting
the carry bits of the CSA to 0, which means that this feature comes almost
for free. Additionally, the architecture is neither restricted to use primes of a
special form (e.g., generalized Mersenne primes), nor does it favor particular
irreducible polynomials like trinomials or pentanomials. Another advantage of
the bit-serial architecture is its high degree of regularity. The presented unified
multiplier offers a fair area/performance trade-off, which makes it attractive for
the implementation of a crypto-coprocessor for low-end 8-bit smart cards.

The correctness of the presented concepts was verified by a functional, cycle-
based model of the multiplier architecture written is a hardware description
language. Our future work will be a VLSI implementation of the multiplier.

References

1. P. Barrett. Implementing the Rivest, Shamir and Adleman public-key encryption
algorithm on a standard digital signal processor. In A. M. Odlyzko (ed.), Advances
in Cryptology — CRYPTO ’86, vol. 263 of Lecture Notes in Computer Science,
pp. 311-323. Springer-Verlag, Berlin, Germany, 1987.

2. T. Beth, B. M. Cook, and D. Gollmann. Architectures for exponentiation in
GF(2"). In A. M. Odlyzko, (ed.), Advances in Cryptology — CRYPTO 86, vol.
263 of Lecture Notes in Computer Science, pp. 302-310. Springer-Verlag, Berlin,
Germany, 1987.

3. 1. F. Blake, G. Seroussi, and N. P. Smart. Elliptic Curves in Cryptography, vol.
265 of London Mathematial Society Lecture Notes Series. Cambridge University
Press, Cambridge, UK, 1999.

4. G. R. Blakley. A computer algorithm for calculating the product AB modulo M.
IEEE Transactions on Computers, 32(5):497-500, May 1983.

5. E. F. Brickell. A fast modular multiplication algorithm with application to two
key cryptography. In D. Chaum, R. L. Rivest, and A. T. Sherman (eds.), Advances
in Cryptology: Proceedings of CRYPTO ’82, pp. 51-60. Plenum Press, New York,
NY, USA, 1982.

6. J. Goodman and A. Chandrakasan. An energy efficient reconfigurable publik-key
cryptography processor architecture. In Q. K. Kog and C. Paar (eds.), Cryp-
tographic Hardware and Embedded Systems — CHES 2000, vol. 1965 of Lecture
Notes in Computer Science, pp. 174-191. Springer-Verlag, Berlin, Germany, 2000.

7. J. Grofischadl. A low-power bit-serial multiplier for finite fields GF(2™). In Proceed-
ings of the 34th IEEE International Symposium on Circuits and Systems (ISCAS
2001), vol. IV, pp. 3740, 2001.

8. Y.-J. Jeong and W. P. Burleson. VLSI array algorithms and architectures for
RSA modular multiplication. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 5(2):211-217, June 1997.

9. N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, vol. 48,
no. 177, pp. 203-209, January 1987.

10. N. Koblitz, A. J. Menezes, and S. A. Vanstone. The state of elliptic curve crypto-
graphy. Designs, Codes and Cryptography, 19(2/3):173-193, March 2000.

11. C. K. Kog and T. Acar. Montgomery multiplication in GF(2*). Designs, Codes
and Cryptography, 14(1):57-69, April 1998.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

A Unified Multiplier for GF(p) and GF(2™) 219

P. Kornerup. High-radix modular multiplication for cryptosystems. In G. Jullien,
M. J. Irwin, and E. E. Swartzlander (eds.), Proceedings of the 11th IEEE Sympo-
sium on Computer Arithmetic, pp. 277-283. IEEE Computer Society Press, Los
Alamitos, CA, USA, 1993.

A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes. In H. Imai
and Y. Zheng (eds.), Public Key Cryptography — PKC 2000, vol. 1751 of Lecture
Notes in Computer Science, pp. 446—465. Springer-Verlag, Berlin, Germany, 2000.
R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their Applications.
Second edition. Cambridge University Press, Cambridge, UK, 1994.

A. J. Menezes. Elliptic Curve Public Key Cryptosystems, vol. 234 of The Kluwer
International Series in Engineering and Computer Science. Kluwer Academic Pub-
lishers, Boston, MA, USA, 1993.

V. S. Miller. Use of elliptic curves in cryptography. In H. C. Williams (ed.),
Advances in Cryptology — CRYPTO 85, vol. 218 of Lecture Notes in Computer
Science, pp. 417-426. Springer-Verlag, Berlin, Germany, 1986.

P. L. Montgomery. Modular multiplication without trial division. Mathematics of
Computation, 44(170):519-521, April 1985.

H. Morita. A fast modular-multiplication algorithm based on a higher radix. In
G. Brassard (ed.), Advances in Cryptology — CRYPTO ’89, vol. 435 of Lecture
Notes in Computer Science, pp. 387-399. Springer-Verlag, Berlin, Germany, 1990.
National Institute of Standards and Technology (NIST). Digital Signature Stan-
dard (DSS). Federal Information Processing Standards (FIPS) Publication 186-2.
Online available at http://csrc.nist.gov/encryption. February 2000.

H. Orup, E. Svendsen, and E. Andreasen. VICTOR an efficient RSA hardware im-
plementation. In I. Damgard, (ed.), Advances in Cryptology — EUROCRYPT 90,
vol. 473 of Lecture Notes in Computer Science, pp. 245-252. Springer-Verlag,
Berlin, Germany, 1991.

B. Parhami. Computer Arithmetic: Algorithms and Hardware Designs. Oxford
University Press, New York, NY, USA, 2000.

W. W. Peterson and E. J. Weldon. Error-Correcting Codes. Second edition. MIT
Press, Cambridge, MA, USA, 1972.

E. Savasg, A. F. Tenca, and C. K. Kog. A scalable and unified multiplier architecture
for finite fields GF(p) and GF(2™). In C. K. Ko¢ and C. Paar (eds.), Cryptographic
Hardware and Embedded Systems — CHES 2000, vol. 1965 of Lecture Notes in
Computer Science, pp. 277-292. Springer-Verlag, Berlin, Germany, 2000.

H. Sedlak. The RSA cryptography processor. In D. Chaum and W. L. Price
(eds.), Advances in Cryptology — EUROCRYPT ’87, vol. 304 of Lecture Notes in
Computer Science, pp. 95-105. Springer Verlag, Berlin, Germany, 1988.

N. Takagi. A radix-4 modular multiplication hardware algorithm for modular
exponentiation. IEEE Transactions on Computers, 41(8):949-956, August 1992.
C. D. Walter. Faster modular multiplication by operand scaling. In J. Feigen-
baum (ed.), Advances in Cryptology — CRYPTO ’91, vol. 576 of Lecture Notes in
Computer Science, pp. 313-323. Springer-Verlag, Berlin, Germany, 1992.

http://csrc.nist.gov/encryption

	1 Introduction
	1.1 Motivation for a Unified Multiplier Architecture
	1.2 Previous Work
	1.3 Our Contribution
	1.4 Paper Outline

	2 Preliminaries
	2.1 MSB-First Iterative Modulo Multiplication
	2.2 Carry-Save Adders

	3 Optimized MSB-First Iterative Modulo Multiplication
	3.1 Redundant Number Estimation

	4 Arithmetic in Binary Extension Fields GF(2^m)
	4.1 Addition
	4.2 Multiplication

	5 Multiplier Architecture
	5.1 Implementation of the Field Arithmetic
	5.2 The Unified Multiplier Architecture
	5.3 Performance Estimation

	6 Summary of Results and Conclusions
	References

