
Fast Primitives for Internal Data Scrambling
in Tamper Resistant Hardware

Eric Brier1, Helena Handschuh2, and Christophe Tymen3

1 Gemplus Card International, Card Security Group
Parc d’Activités de Gémenos, B.P. 100, 13881 Gémenos, France

eric.brier@gemplus.com
2 Gemplus Card International

34 rue Guynemer, 92447 Issy-les-Moulineaux, France
helena.handschuh@gemplus.com

3 École Normale Supérieure
45 rue d’Ulm, 75230 Paris, France
christophe.tymen@gemplus.com

Abstract. Although tamper-resistant devices are specifically designed
to thwart invasive attacks, they remain vulnerable to micro-probing.
Among several possibilities to provide data obfuscations, keyed hard-
ware permutations can provide compact design and easy diversification.
We discuss the efficiency of such primitives, and we give several examples
of implementations, along with proofs of effectively large key-space.

Keywords. Tamper-resistance, Probing attacks, Data scrambling, Keyed
permutations, Smart-cards.

1 Introduction

Microprobing techniques are invasive attacks consisting in introducing a con-
ductor point into certain parts of a tamper-resistant chip to monitor the elec-
trical signal at this spot[3,1], in order to extract some secret information. A
natural means to thwart these attacks consists in encrypting the data stored
or exchanged inside the chip. Using classical block-ciphers like DES provides a
natural solution, but this method becomes quickly illusory when the concerned
data transit through highly time critical processes, like for example the com-
munication between the microprocessor and the RAM. In this case, more hasty
techniques must be used to provide very fast processing at the expense of a
lower, but acceptable security level. This category of techniques is usually and
informally called scrambling, or obfuscation, as opposed to encryption[4].

A popular primitive for scrambling in highly constrained environments con-
sists simply in bit permutations, these permutations being parameterized by a
key. As it appears in what follows, such functions result in very compact designs,
where only one cycle is needed to process the data. Furthermore, a large number
of permutations can be generated, with a one-to-one correspondence with the
key space. Ultimately, keyed permutations can be easily used in more complex
functions which require some keyed linear components.

Ç.K. Koç, D. Naccache, and C. Paar (Eds.): CHES 2001, LNCS 2162, pp. 16–27, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Fast Primitives for Internal Data Scrambling in Tamper Resistant Hardware 17

More precisely, this paper addresses the problem of designing keyed permu-
tations of compact shape, that generate a large set of permutations when the key
runs over the key space, and that offer good properties against chosen plaintext
attacks in the context of physical probing. This combinatorial issue is tractable
for a small number of bits, but becomes more intricate for realistic values like
16 or 32, which brings intrinsic interest to the results of Section 3. The rest of
this paper is organized as follows. Section 2 defines a security model for scram-
bling functions, and proposes a criterion for the design of keyed permutations.
Section 3 is the main part of our paper. Three different constructions for keyed
permutations are proposed, along with proofs of some of their properties. Hard-
ware engineers interested in quickly evaluating the practical contribution of this
paper can directly jump to Section 4, which contains some numerical data about
our new keyed permutations. Some possible applications are also listed. An ex-
ample of a very fast on-chip data scrambler which integrates keyed permutations
is proposed.

2 Scrambling Functions and Probing Attacks

2.1 Security Model

We consider the context of a smart-card microprocessor, which communicates
with the RAM. The memory, and the channel which links it to the micropro-
cessor, are subject to probing attempts. Consequently, to prevent information
disclosure, a data word (b0, . . . , bn−1) is encrypted with a key K using a scram-
bling function CK before being sent to the memory. The key K may be refreshed
each time the card is reset, but might also be regenerated more often, using mul-
tiple keys encryption techniques. We assume that the attacker is allowed to play
with the microprocessor, which implies that he can send any data he wants
to the memory. His goal is to decipher a secret data present in the card, read
from the RAM at some time. The difference with a classical chosen plaintext
attack on a block-cipher is that the attacker has only a partial knowledge of
the ciphertext. Indeed, probing attacks are usually not easy to mount, and in
particular, the attacker might rarely probe wherever he wants[3]. Consequently,
we restrict the capabilities of the attacker to recovering only some of the bits
(b′

0, . . . , b
′
n−1) = CK(b0, . . . , bn−1).

2.2 A Security Criterion for Linear Functions

For efficiency reasons, it is practical to choose for CK a linear function. This
choice does not provide any security against full chosen plaintext attacks, but
might be sufficient if we assume that the attacker knows very few bits b′

i. One of
the possible strategies of the attacker to decrypt a secret data might be to recover
completely K during a preliminary phase when several plaintext messages are
sent to the scrambling function. In this context, we can quantify the security
provided by CK by determining the number of wires that the attacker has to

18 E. Brier, H. Handschuh, and C. Tymen

be able to probe simultaneously to recover the key. In particular, when CK

is a permutation σK of the group Sn of the permutations of {0, . . . , n − 1},
this question boils down to: what is the minimal number of pairs (i, σK(i)) the
attacker needs to know to recover K entirely ? To formalize this condition, we
introduce some definitions and notations. If µ and σ are two elements of Sn, we
denote by µσ the permutation defined by i �→ µ(σ(i)). We also denote by ι the
permutation such that ι(i) = i for all i ∈ {0, . . . , n − 1}.

An (n, k)−keyed permutation is a map from the set {0, 1}k to Sn :

σ : {0, 1}k −→ Sn

K �−→ σK .

The degree of freedom of an (n, k)−keyed permutation is the smallest integer
m ≥ 1 such that there exists an (m+1)−tuple (i1, . . . , im+1) of pairwise distinct
elements of {0, . . . , n − 1}, such that the map{

σK/K ∈ {0, 1}k
} −→ {0, . . . , n − 1}m+1

σK �−→ (σK(i1), . . . , σK(im+1))

is injective. Informally, the degree of freedom is equal to the minimum number
of pairs (i, σK(i)) we have to fix to determine uniquely σK . Note that this does
not mean that this suffices to determine K, as the map from {0, 1}k to Sn might
not be injective, but in our context, the secret key is completely recovered as
soon as σK is known. From a practical standpoint, this definition implies also
that we should look for keyed permutations with a degree of freedom as high as
possible.

For example, in the strongest case, if σ is surjective in Sn, then σ has degree
of freedom n − 1 : we need exactly n − 1 distinct pairs (i, σK(i)) to determine
completely σK (the missing value is infered from the n − 1 others, since σK is
a bijection). For the weakest case, let µ �= ι be in Sn, and consider the keyed
permutation σb from {0, 1} to Sn such that σ0 = ι and σ1 = µ. Then σ as degree
of freedom one: as µ �= ι, there exist i1 such that σb(i1) �= i1 iff b = 1.

3 A Recursive Construction

3.1 Outline of the Result

This section explains the construction of three different (n, k)−keyed permuta-
tions when n is a power of two. These three constructions can be realized using
combinatorial logic, and the corresponding circuits are of depth log2 n. Conse-
quently, they achieve a very compact shape, and very short propagation delay
features.

The construction of Section 3.3 generates 2n−1 permutations, which are in
one-to-one correspondance with the key space. This construction is improved in
Section 3.4, where we generate nn/2 permutations. Section 3.5 still improves this
result by generating at least nαn2−βn permutations, with α = (log2 6)/4 ≈ 0.65
and β = (log2 6)/4 − 1/2 ≈ 0.15. Furthermore, we prove that the last two
constructions have degree of freedom at least n/2 − 1.

Fast Primitives for Internal Data Scrambling in Tamper Resistant Hardware 19

Fig. 1. Hardware realization of a switch

3.2 Hardware Representation of Keyed Permutations

The most natural approach to design hardware permutations is to use the set of
the transpositions of Sn. We recall that a transposition is an element (i, j) of Sn

which exchanges the symbol i with the symbol j. A well-known fact is that every
permutation on can be expressed as a product of transpositions. If t is a transpo-
sition, a keyed permutation b �→ tb with one bit of key can be realized using two
parallel multiplexers. We call such a block a switch. A hardware realization of
a switch is given in figure 1. Oriented graphs provide a compact representation
of switch based circuits. For example, figure 2 represents the keyed permutation
(b0, b1) �→ (1, 3)b0(0, 1)b1 ∈ S4. The grey nodes correspond to the switches, and
are commanded by additional key wires, which do not appear on the figure. In
the following, the depth of a circuit will refer to the number of stages composing
the circuit, this number being related to a switch-based design. Note that the
switch-depth is less than or equal to the multiplexer-depth.

0 1 2

2

3

0 13

Fig. 2. Graphical representation of the keyed permutation (1, 3)b0(0, 1)b1

3.3 A Group Theoretic Construction

We denote by Hn
2 a greatest subgroup of Sn which order is a power of two. Hn

2
is called a Sylow 2−subgroup of Sn. In all the following, we will suppose that n
is a power of two. In this case, Hn

2 has order 2n−1[5]. A set of generators of Hn
2

can be constructed recursively as follows. Consider the set {0, . . . , n − 1}, and

20 E. Brier, H. Handschuh, and C. Tymen

the permutation g ∈ Hn
2 which exchanges {0, . . . , n/2− 1} with {n/2, . . . , n− 1}

by i ↔ i + n/2. Now, we can repeat inductively this procedure by considering
the sets {0, . . . , n/2 − 1} and {n/2, . . . , n − 1}. We get finally n − 1 elements of
Sn which generate Hn

2 .
These generators are very easy to implement in hardware, since permuting

two sets of k bits can be done using k switches parameterized by the same bit
of key. This yields to a (n, log2 n − 1)−keyed permutation, that can be realized
using (n log2 n)/2 switches. Figure 3 summarizes schematically this recursive
construction.

Fig. 3. Recursive contruction based on Sylow 2−subgroups

An interesting property of this design is that the set of generated permuta-
tions forms a group. We can take advantage of this fact to increase the number
of generated permutations: In our previous construction, we built a hardware
design which realized the keyed permutation gK , where gK takes all the values
of Hn

2 when K runs over the key space. Denote by ρ a well-chosen permutation,
which we implement in hardware, that is, by permuting physically the wires.
Then, by reusing the previous construction, we can realize the keyed permuta-
tion

s(K1,K2) = gK1 ◦ ρ ◦ gK2 ,

which should generate more permutations. The question is to determine how
many permutations are effectively generated by this method. It is easy to see
that no collisions appear (i.e. the number of generated permutations is equal to
|Hn

2 |2) iff the following algebraic condition is verified:

ρHn
2 ρ−1 ∩ Hn

2 = {ι} . (1)

The naive complexity of checking if a given permutation ρ verifies (1) is equal to
|Hn

2 | = 2n−1. Consequently, our approach fails as soon as say n ≥ 32, since this
last verification has to be made 32!/2 times on average before finding a solution.
Nevertheless, for n = 32, we may still get a result using the following trick:
we define H, the subgroup of H32

2 which preserves {0, . . . , 15} and {16, . . . , 31}.
H is isomorphic to H16

2 × H16
2 , and has cardinality 230. Consider the keyed

Fast Primitives for Internal Data Scrambling in Tamper Resistant Hardware 21

permutation (K1, K2) �→ hK1βgK2 , where hK1 runs over H, gK2 runs over H32
2 ,

and where β is a fixed permutation. This map is injective iff

βHβ−1 ∩ H32
2 = {ι} . (2)

A simple method to find such a β is first to solve (1) for n = 16, and then to set
β = (ρ(·), ρ(· − 16) + 16). This search terminates on average after (|S16/H16

2 | ·
|H16

2 |)1/2 ≈ 222 trials. For instance, the following permutation is a solution of
(1) for n = 16:

ρ = (0, 15, 9, 10, 11, 12, 13, 14)(1, 2, 3)(4, 5, 6, 7, 8) .

The resulting number of generated permutations is equal to 230 · 231 = 261.

3.4 Generalization of the Group-Based Design

Unfortunately, this improvement works only for n ≤ 32. Furthermore, we gener-
ate only 261 permutations, among the 32! ≈ 2118 elements of S32. Nevertheless,
as we will see, a slight modification of the set of generators leads to generating
a much larger subset of Sn. The price to pay for this improvement is to lose
the group property, but this has no impact for our application. As before, the
solution is built recursively by induction on log2 n, so that at each step of the
induction, we add a new stage to the corresponding circuit.

Theorem 1. If n is a power of two, then there exists a circuit of depth log2 n
involving (n log2 n)/2 switches, which realizes a (n, (n log2 n)/2)−keyed permu-
tation δ. Furthermore, the number of distinct generated permutations is equal to
the number of keys, that is nn/2.

Proof. We proceed by induction. Let σ be a (n/2, ((n/2) log2(n/2))/2)−keyed
permutation with the properties stated in the theorem. For convenience, we set
k = ((n/2) log2(n/2))/2. First, we defined the (n, 2k)−keyed permutation µ as

µ(K1,K2)(i) =
{

σK1(i) if 0 ≤ i < n/2
σK2(i − n/2) + n/2 if n/2 ≤ i < n ,

(3)

where K1, K2 ∈ {0, 1}k. Let set k′ = 2k + n/2, and define the (n, k′)−keyed
permutation δ by

δ(K1,K2,E) = νE ◦ µ(K1,K2) ,

where

νE =
n/2−1∏

j=0

(j, j + n/2)ej ,

and E = (e0, . . . , en/2−1) ∈ {0, 1}n/2. First, k′ = 2k + n/2 = n(log2 n − 1)/2 +
n/2 = (n log2 n)/2, which corresponds to what we expect. Furthermore, the
number of switches used for realizing δ is equal to 2k + n/2 = k′. It remains
to prove that δ is injective. This comes from the fact that for all 0 ≤ i < n/2,

22 E. Brier, H. Handschuh, and C. Tymen

δ−1
(K1,K2,E)(i) < n/2 iff ei = 0. Consequently, we can uniquely recover E from

δ(K1,K2,E). As µ is injective, we can also recover uniquely K1 and K2 from
µ(K1,K2) = ν−1

E ◦ δ(K1,K2,E), which concludes the proof. ��
Figure 4 represents an example of this construction for the case n = 8.

0 1 2 3 4 5 6 7

0 4 1 52 6 3 7

Fig. 4. Representation of δ for n = 8

As motivated in section 2.2, we want to check that δ has high enough degree
of freedom. This is guaranteed by the following result :

Theorem 2. The degree of freedom dδ of the keyed permutation δ of theorem 1
verifies

dδ ≥ n/2 − 1 .

Proof. We proceed by induction on n. When n = 2, the theorem is true, as
in order to guess the state of the switch, we have to know at least one pair
(i, δK(j)). Suppose that the theorem is true at step n/2. Recall that with the
notations of theorem 1, δ is given by the recursion formula

δK=(K1,K2,E) = νE ◦ µ(K1,K2) ,

where µ is defined from the (n/2, k)−keyed permutation σ following (3). The
induction formula implies that σ has degree of freedom n/4 − 1. We set r =
n/2 − 1, and we choose an r−tuple (i1, . . . , ir) of pairwise distinct elements of
{0, . . . , n − 1}, a key K = (K1, K2, E), and we set jl = δK(il). Consider the set
I1 =

{
l/ν−1

E (jl) < n/2
}
, and I2 =

{
l/ν−1

E (jl) ≥ n/2
}
. As |I1|+|I2| = n/2−1, one

of the two sets (for example I1) has strictly less than n/4 elements: |I1| ≤ n/4−1.
Furthermore, as µ preserves {0, . . . , n/2− 1} and {n/2, . . . , n − 1}, for all l ∈ I1,
il < n/2. Consequently, there exists K ′

1 �= K1 such that

∀l ∈ I1, σK1(il) = σK′
1
(il) .

This implies that

δ(K1,K2,E)(i1, . . . , ir) = δ(K′
1,K2,E)(i1, . . . , ir) .

This proves that δ has degree of freedom greater than n/2 − 1. ��

Fast Primitives for Internal Data Scrambling in Tamper Resistant Hardware 23

3.5 Further Improvements

We may still try to improve the previous construction by modifying it so that
we could generate a larger set of permutations. We always consider the keyed
permutation δ as defined above, with the recursion formula

δK=(K1,K2,E) = νE ◦ µ(K1,K2) .

Define the vector ε = (ε0, . . . , εn−1) as εi = 1
{
δ−1
K (i) < n/2

}
, where 1

{
P

}
is

equal to one when the predicate P is true, and to zero otherwise. As underlined
in the proof of theorem 1, there is a one-to-one correspondence between the
set of all the keys E and the set of all the n/2−tuples (ε0, . . . , εn/2−1). This
is because µ preserves the segments i < n/2 and i ≥ n/2. This means that
ε contains twice too much information. Consequently, our idea is to group the
transpositions (j, j + n/2) of µ two by two, and to compose them with a cycle
of the four concerned elements, so that we could still invert our map thanks to
the associated 4-tuple of bits εi.

Consider first the set {0, 1, 2, 3}, and the map

g : (b0, b1, b2) ∈ {0, 1}3 �−→ (0, 2, 1, 3)b0(0, 2)b1(1, 3)b2 .

We consider also the map defined by

h(b0, b1, b2) =
(
1
{
g(b0, b1, b2)−1(i) < 2

})
0≤i≤3 .

The truth table of h is given below:

(b0, b1, b2) h(b0, b1, b2)
(0, 0, 0) (1,1,0,0)
(0, 0, 1) (1,0,0,1)
(0, 1, 0) (0,1,1,0)
(0, 1, 1) (0,0,1,1)
(1, 0, 0) (0,0,1,1)
(1, 0, 1) (1,0,1,0)
(1, 1, 0) (0,1,0,1)
(1, 1, 1) (1,1,0,0)

As it can be seen, h({0, 1}3) has cardinality six.
Now, group the points of {0, . . . , n − 1} four by four (when n ≥ 4):

A0 = (0, 1, n/2, n/2 + 1),
A1 = (2, 3, n/2 + 2, n/2 + 3),
...
An/4−1 = (n/2 − 2, n/2 − 1, n − 2, n − 1) .

Finally, form the cycles c0, . . . , cn/4−1, with support respectively equal to the
Ai, obtained from the cycle (0, 2, 1, 3) by applying for each 0 ≤ i < n/4 the
substitutions

0 �→ i, 1 �→ i + 1, 2 �→ n/2 + i, 3 �→ n/2 + i + 1 .

24 E. Brier, H. Handschuh, and C. Tymen

We are now ready to build recursively a keyed permutation χ, with the same
method as in the proof of theorem 1. Following analogous notations, we define
χ(K1,K2,E,F) inductively as

χ(K1,K2,E,F) = ξF ◦ νE ◦ µ(K1,K2) , (4)

where

ξF =
n/4−1∏

j=0

c
fj

j ,

with F = (f0, . . . , fn/4−1) ∈ {0, 1}n/4.

Theorem 3. χ is a (n, k)−keyed permutation, where k = 3
4n log2 n. χ can be

realized using k switches, and has degree of freedom at least n/2−1. Furthermore,
χ generates at least an distinct permutations, where an verifies the recursion
formula {

an = 6n/4a2n/2 if n ≥ 4
a2 = 2 .

Proof. We prove the recursion formula, the verification of the other points being
straightforward. Suppose that we have constructed an (n/2, k)−keyed permuta-
tion σ that verifies our statements. We denoted by E the largest set of the keys
such that σ restricted to E is injective. Referring to the recursive construction of
χ of equation (4), it is clear that µ restricted to E ×E is injective: this is a direct
consequence of definition (3) of µ. Consider for each 0 ≤ i < n/4 the 3−tuples
Ui = (e2i, e2i+1, fi), and the set

A =
{
(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)

}
.

Using the truth table of h, we see that h restricted to A is injective. Consider
the set F of the keys defined by F =

{
(E, F)/∀i Ui ∈ A}

. It is clear that

|F| = |A|n/4 = 6n/4 . (5)

Now, since µ(K1,K2) preserves the sets {0, . . . , n/2− 1} and {n/2, . . . , n − 1}, we
have that

χ−1
K (i) < n/2 ⇐⇒ (ξF ◦ νE)−1(i) < n/2 .

This implies that χ restricted to E × E × F is injective. Using equality (5) and
the fact that |E| ≥ an/2, this proves the theorem. ��

It is easy to check by induction that log2 an > (n log2 n)/2, which means that
χ generates effectively more permutations than δ. The explicit expression of an

announced in section 3.1 results from the fact that the sequence (log2 an)/n is
in arithmetic progression.

Contrary to δ, the distribution of the permutations generated by χK , when
K is chosen uniformly, is not uniform. We leave open the question of determining
exactly this distribution. Anyway, it is easy to reduce the key space so that the

Fast Primitives for Internal Data Scrambling in Tamper Resistant Hardware 25

restriction of χ becomes injective. For that, it suffices to restrict the keys (E, F)
to the set F defined in the proof above, and to proceed by induction. We leave
open the question of the exact distribution of the generated permutations.

The practical realization of χ implies to design in hardware a keyed permu-
tation with a cycle of length four, like (0, 1, 2, 3)b, b ∈ {0, 1}. This can be easily
done in one stage using four multiplexers

Figure 5 shows a realization of χ for the case n = 8. The nodes with 8 edges
represent the cycle (0, 2, 1, 3) involved in the construction of χ.

01 23 45 67

0 4 1 5 2 6 3 7

0 14 5 2 36 7

Fig. 5. Representation of χ for n = 8

4 Practical Examples and Applications

4.1 Numerical Examples

Table 1 shows the characteristics of the two keyed permutations δ and χ for
various values of n = 8, 16, 32, 64. The number of multiplexers needed for their
construction is denoted by Nmux, and the number of distinct generated permu-
tations is denoted by Nperm.

Table 1. Characteristics of δ and χ for various values of n

δ χ δ χ δ χ δ χ

n 8 16 32 64
Nmux 32 40 88 112 224 288 544 704
Depth 3 6 4 8 5 10 6 12
Key size 12 16 32 44 80 112 192 272
[log2 Nperm] 12 14 32 39 80 99 192 239
[log2 n!] 15 44 118 296

An important fact is the very small number of stages needed to implement
δ and χ. For example, for n = 32, the design has only five levels of gates.
This property makes these functions particularly suitable for data scrambling in
critical pathes. Non exhaustive applications are: scrambling of the bus between
the microprocessor and the memory, scrambling of the RAM, or scrambling of
the bus between the CPU and the cryptoprocessor.

26 E. Brier, H. Handschuh, and C. Tymen

4.2 Protecting the Secrecy of the Design

These functions can also easily be diversified, and thus provide a customizable
design, so that the final scrambling function can remain secret. Recall that δ is
built recursively from the equation

δ(K1,K2,E) = νE ◦ µ(K1,K2) .

This definition would correspond to the “normal form” of our construction.
Derivated forms can be obtained as follows: at each step of the induction, we
choose two permutations α1, α2, acting respectively on {0, . . . , n/2 − 1} and on
{n/2, . . . , n − 1}, and we implement these permutations in hardware, that is,
we permute physically the wires of the circuit. Here, α1 and α2 are supposed to
be kept secret. With the same material, we can now build δ using the modified
equation

δ(K1,K2,E) = νE ◦ α1 ◦ α2 ◦ µ(K1,K2) .

It is not difficult to see that we generate mutatis mutandis the same number of
permutations as before, and that the resulting keyed permutation has the same
degree of freedom. It suffices for this to rewrite the proofs of theorems 1 and 2.
The same construction can be applied to χ, with the same consequences.

4.3 Non-linear Data Scrambling Using Keyed Permutations

The primitives that we have just described can easily be incorporated into more
complex non-linear data scrambling functions. One major advantage of the pro-
posed constructions is the large size of the key-space and of the resulting func-
tion space. Besides, the very compact shape of the resulting circuits allows to
use them several times in more complex functions.

Following Shannon’s basic confusion-diffusion paradigm, these keyed permu-
tations can be used in alternating layers with small, say 4 bit to 4 bit substitution
boxes (S-boxes). Clearly, such constructions cannot achieve the same security
level as classical block ciphers do : following Shamir’s security analysis [6], a five
layer SASAS construction using alternating layers of S-boxes and affine functions
(of which permutations are a special case) can be broken using approximately
216 chosen plaintexts for 128 bit blocks and 8-bit to 8-bit Sboxes.

However, this kind of construction still yields a sub-exponential security
bound instead of a linear security bound in terms of chosen plaintext attacks. As
the attacker has quite limited resources in the probing setting anyhow, bearing
in mind that she is not able to probe more than a handful of wires simultaneously
using the same session scrambling key, a limited number of layers of additional
key-dependent S-boxes will sufficiently increase the difficulty of unscrambling
the memory and bus contents in the context of tamper-resistant objects such as
smart-cards.

In terms of circuit complexity, a 4 bit to 4 bit S-box can be efficiently imple-
mented using an average of 32 gates with a circuit depth three (in a completely
optimized architecture this depth may become as low as one). Thus for the ex-
ample SASAS structure for a 32 bit input size, each substitution layer adds

Fast Primitives for Internal Data Scrambling in Tamper Resistant Hardware 27

approximately 256 gates to the 224 gates of the proposed keyed permutation.
With five layers altogether, the circuit has around 1200 gates for a depth of 19.
It is then left to the designer to select whatever circuit complexity is acceptable
in the concerned architecture compared to the obfuscation level fit for purpose.

5 Conclusion

We proposed three implementations of keyed permutations, which achieve very
short depth, and effectively large key space. We indicated also a criterion to
identify keyed permutations with good properties against chosen plaintext at-
tacks realized by probing. These functions are particularly well suited for data
obfuscation in very constrained environments like smart-cards.

Acknowledgments

We thank Guglielmo Morgari and Vittorio Bagini for careful reading, and David
Naccache for fruitful discussions. We are also grateful to the anonymous referee
for helpful comments.

References

1. Ross Anderson and Markus Kuhn. Tamper resistance – a Cautionary Note. In
The second USENIX Workshop on Electronic Commerce Proceeding, pages 1–11,
Oakland, California, November 1996.

2. Tamás Horvàth. Arithmetic Design for Permutation Groups. In Ç.K. Koç and
C. Paar, editors, Cryptographic Hardware and Embedded Systems (CHES ’99), num-
ber 1717 in Lecture Notes in Computer Science, pages 109–121. Springer Verlag,
1999.

3. Olivier Kömmerling and Markus Kuhn. Design principles for Tamper-Resistant
Smartcard Processors. In USENIX Workshop on Smartcard Technology, Chicago,
Illinois, USA, May 1999.

4. S. Rankl and W. Effing. Smart Card Handbook. John Wiley & Sons, 1999.
5. Derek Robinson. A Course in the Theory of Groups. Number 80 in GTM. Springer

Verlag, 1991.
6. Adi Shamir. Assassinating SASAS. Rump session of Crypto’2000.

	1 Introduction
	2 Scrambling Functions and Probing Attacks
	2.1 Security Model
	2.2 A Security Criterion for Linear Functions

	3 A Recursive Construction
	3.1 Outline of the Result
	3.2 Hardware Representation of Keyed Permutations
	3.3 A Group Theoretic Construction
	3.4 Generalization of the Group-Based Design
	3.5 Further Improvements

	4 Practical Examples and Applications
	4.1 Numerical Examples
	4.2 Protecting the Secrecy of the Design
	4.3 Non-linear Data Scrambling Using Keyed Permutations

	5 Conclusion
	Acknowledgments
	References

