Two Methods of Rijndael Implementation
in Reconfigurable Hardware

Viktor Fischer! and Milo§ Drutarovsky?

! Laboratoire Traitement du Signal et Instrumentation,
Unité Mixte de Recherche CNRS 5516, Université Jean Monnet,
Saint-Etienne, France
fischer@univ-st-etienne.fr
2 Department of Electronics and Multimedial Communications,
Technical University of Kosgice,

Park Komenského 13, 041 20 Kosice, Slovak Republic
Milos.Drutarovsky@tuke.sk

Abstract. This paper presents an evaluation of the Rijndael cipher,
the Advanced Encryption Standard winner, from the viewpoint of its
implementation in a Field Programmable Devices (FPD). Starting with
an analysis of algorithm’s general characteristics a general cipher struc-
ture is described. Two different methods of Rijndael algorithm mapping
to FPD are analyzed and suitability of available FPD families is evalu-
ated. Finally, results of proposed mapping implemented in Altera FLEX,
ACEX and APEX FPD are presented and compared with the fastest
known Xilinx FPGA implementation. Results obtained are significantly
faster than that of other implementations known up to now.

1 Introduction

Since 1997 the National Institute of Standards and Technology (NIST) has
been working with the international cryptographic community to develop an
Advanced Encryption Standard (AES). One of requirements given by the NIST
on AES candidates [T] was the possibility of their efficient hardware implementa-
tion [2]. Compared with software-based solution, hardware implementation offers
superior performance and significantly higher system security. Implementation in
Field Programmable Devices (FPD)H adds to these two parameters a possibility
to modify the algorithm in the field. Several papers dealing with implementation
of AES candidates in reconfigurable hardware have been published so far. Some
of them give only estimation of these parameters [3], while others present results
based on implementation in FPGA [4], [5], [6]. Although some authors (e.g. [4],
[B]) analyze the possibility to increase the speed using pipeline structures, the
use of these structures in current cryptography is limited, because they are not

! There are several vendors of FPD. These vendors use different names for their
FPD - e.g. Field Programmable Gate Arrays (FPGA) by Xilinx and Complex Pro-
grammable Logic Devices (CPLD) by Altera. FPD abbreviation is used as common
name for all of them.

C.K. Kog, D. Naccache, and C. Paar (Eds.): CHES 2001, LNCS 2162, pp. 77-02, 2001.
(© Springer-Verlag Berlin Heidelberg 2001

78 V. Fischer and M. Drutarovsky

suitable for encryption/decryption in the most common feedback modes such
as Cipher Block Chaining mode, Cipher Feedback Mode, and Output Feedback
Mode. All of above mentioned papers present results of implementation in Xil-
inx FPGA (mostly in a high performance Virtex family [7]) and the final AES
NIST report [2] is based on these results. Some research groups [8], [9], [10], [11]
presented also results of the implementation of AES candidates in Altera FLEX
logic devices [12]. In October 2, 2000 NIST has decided to propose Rijndael ci-
pher [13] as the Advanced Encryption Standard and it is expected that Rijndael
will be used by U.S. Government and, on voluntary basis, by the private sector.
Based on this decision our further optimization effort was concentrated to the
Rijndael algorithm and performance results presented in [9], [T4] have been sig-
nificantly improved in our new implementations. This improvement is based on
different method of algorithm mapping, better VHDL encoding and usage of Al-
tera low-cost ACEX? [15] and high-performance APEX [16] FPD families. This
paper evaluates two different methods of the Rijndael cipher implementation
from the viewpoint of its hardware mapping into high performance Altera FPD
and it is organized as follows. A brief overview of Rijndael cipher algorithm and
its basic building blocks is given in Section 2l In Section [3 aspects of proposed
methods are discussed and different solutions from the viewpoint of the FPD
embedded memory occupation and speed are presented. The limitations and im-
plementation results of VHDL design for advanced Altera FPD are described in
Section[dl In Section[d, the results obtained for both methods are compared and
some comparisons with the fastest known implementations are made. Finally, in
Section [6] possible future work is described and concluding remarks are made.

2 Rijndael Cipher Overview
2.1 Basic Algorithm Characteristics

Rijndael is a block cipher using 128, 192 and 256-bit input/output blocks and
keys [13]. The sizes of data blocks and keys can be chosen independently. Number
of rounds depends on both of these parameters and it is given in [13]. In the next
analysis 128 bits for both I/O block and user key are assumed. Therefore, the
cipher in all presented configurations operates in N, = 10 rounds.

Encryption and Decryption Algorithms. Encryption and decryption (in
the following text referred as standard decryption) algorithms for 128-bit in-
put/output block and 128-bit user key are depicted in Fig. [h and Fig. b,
respectively. Round keys Ky to K are obtained by the expansion of the user
key, following the algorithm, described bellow.

As it can be seen, the cipher core is composed mostly of operations that are
easy to implement in a reconfigurable hardware: byte rotation (permutation),
byte substitution and bit-wise addition modulo 2 (XOR). The only exception is
the MizColumn function and its inverse (InvMizColumn function), that involve

2 Low-cost FPD are optimal for many practical cost-sensitive cryptographic applica-
tions.

Two Methods of Rijndael Implementation in Reconfigurable Hardware 79

| Plaintext (128 bits) | | Ciphertext (128 bits) |
5 ST
— v
| ByteSut*)stltutlon |) i=9 | InvMixColumn |i<9\
| ByteRotation | 20 i o
> = | InvByteRotation | > 5
. - . L 2 Il
=10 | MixColumn | i<10 & | InvByteSubstitution | é
? ’ S
| Ciphertext (128 bits) | [Plaintext (128 bits) |
a) b)

Fig. 1. Structure of Rijndael cipher a) encryption algorithm b) standard decryption
algorithm

matrix multiplication on 32-bit blocks in Galois field GF(28). Byte substitution
operation uses 8 x 8-bit S-boxes (byte substitution bozes). There is one type of
S-boxes for encryption and another one for decryption. Both of them are applied
byte-wise on the whole 128-bit block.

Key Scheduling. Round keys K; are derived from the user key by means of
the key schedule. It consists of two components: key expansion and round key
selection. Total number of round keys is equal to N, + 1. The key expansion
algorithm (see Fig.[2) uses bit-wise additions modulo 2 of 32-bit values obtained
from user key combined with byte substitution, the byte rotation and round
constants (RCons) addition. The order of round key calculation is the same for
both encryption and decryption, although decryption uses round keys in reverse
order.

Difference between Encryption and Decryption. Standard encryption and
decryption algorithms use different ordering of basic operations. Moreover, basic
operations for decryption are different (they implement inverse versions of basic
encryption operations). As a consequence of this fact resource sharing between
encryption and decryption logic is very limited.

Modification of the Order of Operations. In the table-lookup implementa-
tion it is essential that the only nonlinear step (inverse byte substitution) is the
first transformation in a round and that the rows are shifted before MixColumn
is applied. In the standard decryption algorithm inverse byte substitution is the
last operation in the round. It is shown in [I3] that order of inverse byte substitu-
tion and inverse byte rotation can be changed (both operation are byte oriented).

80 V. Fischer and M. Drutarovsky

4 < i<4(NAH1)
Wiy
Wis
Wi
VVH > ByteSub >} ByteRot RCons
v s
iMOD 4 # 0 . iMOD4 =0
v

Fig. 2. Key expansion algorithm

Fig. 3. Round modification for decryption

This feature is depicted in Fig. Bl Since InvMixCol is a linear transformation,
the following equation is valid

InvMizColumn(d ® K) = InvMizColumn(d) ® InvMixColumn(K) . (1)

Using properties described above, the standard Rijndael decryption algorithm
can be transformed into its modified form described in Fig.[d. Comparing Fig. B
and Fig. [[h it can be found that order of operation of encryption and modified
decryption algorithms is the same (although significance of each operation is
different). Moreover, round keys have to be inverted by InvMixColumn function
with the exception of the first and last round keys.

2.2 Classification of Basic Cipher Operations
and Choice of Technology

Rijndael has a relatively simple structure, while most of operations can be easily
implemented in FPD. Efficient implementation of Rijndael algorithm requires
ability to implement the following basic cipher operations:

Two Methods of Rijndael Implementation in Reconfigurable Hardware 81

| Ciphertext (128 bits) |

® Ky

| InvByteSubstitution | N

Y
| InvByteRotation |

> fori=91t00

i=0 | InvMixColumn | i>0

() ImK; y

| Plaintext (128 bits) |

Fig. 4. Modified decryption algorithm

Bit-wise Addition Modulo-2 (XOR). This operation is easily realisable in
FPD using input lookup table of Logic Element (LE) of Altera FPD or Con-
figurable Logic Block (CLB) of Xilinx FPD. XOR operation with two to four
inputs can be implemented in each LE or CLB slice (1/2 of CLB).

Fixed Rotation (Byte Permutation). Also this operation can be easily
implemented but in this case routing resources are used. Cell interconnections
can be reordered in a very simple way to implement rotations in both directions.
Byte permutation order is different for encryption and for decryption.

8 X 8-bit S-boxes. Rijndael cipher uses 2 types of fixed 8 x 8-bit S-boxes: S-box
S[z] for encryption and inverse S-box S~1[z] for decryption. For memory limited
implementations both S-boxes can be efficiently computed using the algorithm
described in [13]. Actual design choice depends on features of FPD family. 8 x
8-bit S-boxes should preferably be realised using large embedded memories,
because combinatorial function would occupy many resources (input LUTSs of
LE or CLB). Dedicated embedded memory blocks are ideal for implementing
S-boxes. We have used them in implementations based on Altera devices.

In general, S-boxes can be implemented as lookup tables using dedicated
embedded memories or within a set of small memories of LEs or CLBs configured
as memory elements. Actual design choice depends on features of FPD family.
8 x 8-bit S-boxes should preferably be realised using large embedded memories,
because combinatorial function would occupy many resources (input LUTs of
LE or CLB). Dedicated embedded memory blocks are ideal for implementing
S-boxes and they were used in implementations based on Altera devices.

The size of required memory depends on number of bytes that should be
substituted in one clock period. If the whole 128-bit word should be processed
in one period, 16 identical 8 x 8-bit S-boxes have to be used for encryption

82 V. Fischer and M. Drutarovsky

and for decryption. This requires the total memory capacity of 655363 Since all
operations of the round can be executed in parallel during one clock period, the
algorithm can be executed in at least IV, + 1 clock periods.

MixColumn and InvMixColumn Functions. There is a quite important
difference between encryption and decryption. MixColumn function

Yy 02 03 01 01 X,
Yi| _ 01020301 |X @
Ys 01 01 02 03 X5 |

Yy 03 01 01 02 X

where o represents the multiplication in GF(2%) using the primitive polynomial
m(z) = 2% + 2t + 23 + 2' + 1 and X;,Y; € GF(28), is replaced by its inverse —
InvMixColumn

Yo 0E 0B 0D 09 X
Yi| _ |09 0E 0B 0D| | X, 3
Ys 0D 09 0E OB Xy | -

Yy 0B 0D 09 OE X,

Matrix Multiplications in GF(28). These operations constitute the main
obstacle in efficient implementation of this cipher in programmable devices. Au-
thors of Rijndael propose a method using so called X Time function [13] to solve
this problem. This 8-bit function can be easily implemented also in FPD and
the matrix multiplication represents XOR operations applied on the outputs of
this function. There is also another possibility to realise matrix multiplication.
Since square matrices in MixColumn (2) and InvMixColumn functions (3) con-
tain constant elements (polynomials in GF(2%)), it can be shown [17], that this
multiplication can be replaced by several XOR (@) operations that are simple
to implement in FPD. For example, operation

Y =03eX, forX,Y € GF(2%) (4)

represents multiplication in GF(2%) using primitive polynomial m(x). It can be
implemented using following bit-wise XOR operations

Y7 = 27 O T Yo = Te D Ts

Ys = 25 D Ta Yo =27 Dxg D3 . (5)
Ys = 27 3 D T2 Y2 =22 O X1

Y1 =27 D x1 D20 Yo = x7 B 27 D T

This way matrix multiplication can be replaced by several XOR operations.

3 In some FPD families that include large dedicated embedded memory blocks (e.g. 4
kbit blocks in Altera FLEX 10KE and ACEX 1K) it make no sense to use compact
S-box and inverse S-box representation based on the affine transform [13].

Two Methods of Rijndael Implementation in Reconfigurable Hardware 83

Key Scheduling. The key scheduling is different for both encryption and de-
cryption. Encryption round keys are used in normal order and can be computed
on-the-fly. During standard decryption encryption round keys are used in re-
verse order and so they cannot be computed on-the-fly. For modified decryption
depicted in Fig. [, additional InvMixColumn function have to be applied on
encryption round keys [I3]. Round keys can be calculated easily from the user
key using operations as XOR and rotation on 32-bit data. So the key schedule
computation is very fast. Since round key preparation for modified decryption
algorithm is more complex (application of InvMixColumn function on encryp-
tion round keys), decryption latency (cipher preparation time) could be higher
than that of encryption. Encryption and decryption use (N, + 1) 128-bit keys,
so the RAM capacity should be at least 1408 bits.

Choice of FPD Technology. From the above analysis it follows that criti-
cal operations from the point of view of their implementation in FPD are byte
substitution and matrix multiplication. While fast byte substitution necessitates
the presence of huge and fast memory blocks, matrix multiplication needs high
fan-in combinatorial parts and significant count of global interconnections. Al-
tera FLEX, ACEX and APEX families seem to fulfil better the first condition.
On the contrary, Xilinx VIRTEX family offers more interconnection flexibility
and more convenient combinatorial part of CLB (two LUTs per CLB). Since the
speed of byte substitution operation seemed to be dominant in overall cipher
speed, we have selected Altera FPD to implement the algorithm.

3 Methods of Rijndael Mapping to FPD

The speed and FPD resource requirements of Rijndael cipher mapping depends
on the method used for actual mapping into available FPD resources. This sec-
tion analyzes two mapping methods optimized for FPD with large embedded
memory blocks (EMB), e.g. Embedded Array Block (EAB) in FLEX and ACEX
devices or Embedded System Block (ESB) in APEX devices. Two types of ci-
pher core configurations in feedback mode based on basic iterative architecture
without loop unrolling are assumed: a fast configuration and an economic config-
uration. For both configurations it is assumed that encryption and/or decryption
round keys are precomputed and stored in the EMBs.

The cipher architecture in the fast configuration is shown in Fig.[Bl One round
of the cipher is implemented as a mixture of combinational logic and access to
EMBEs, supplemented with a single register and a multiplexer. In the first clock
cycle, complete input block of data (128 bits) is fed through a multiplexer, and
stored in the register. In each subsequent clock cycle, one round of the cipher
is evaluated, the result is fed back to the circuit through the multiplexer, and
stored in the register. Therefore encryption and decryption can be made in 11
clock cycles.

The cipher architecture in the economic configuration is very similar to that
in the fast configuration. The only difference is that it uses cipher core with

84 V. Fischer and M. Drutarovsky

Plaintext (128 bits) | | &, |

Combinatorial function

Registers —| 128 bits :
N MUX / E

_> i :

16 %8 bits ! ;

[ByteSub (ROM) | : !

R 5 ST 2 S :

i | ByteRotation | :

' T '

| v |

' | MixColumn | |

[Ciphertext (128 bits)] ! | E

Fig. 5. Cipher architecture in the fast configuration

resource (especially EMBs) sharing. Internal data block, the 128-bit cipher state,
is processed in 64 (32) bit sub-blocks in 2 (4) subsequent clock cycles. One round
of cipher is executed in 2 (4) clock cycles and complete encryption/decryption
can be made in 22 (44) clock cycles. The economic configuration needs 2 (4)
times less S-boxes than the fast configuration.

3.1 Mapping Based on 8 x 8-Bit S-boxes

This approach was used in all known FPD implementations of Rijndael algorithm
since it has minimal memory requirements. For the fast configuration (see Fig. B
it uses 16 identical 8 x 8-bit S-boxes. Algorithm mapping for encryption is based
on block diagram described in Fig. [Tl and for decryption on that in Fig. [Ib.
It is clear that the logic for encryption and decryption is different and cannot
be shared. Encryption and decryption S-boxes are also different. Since EAB in
FLEX 10KE and ACEX 1K families contains 4096 bits RAM/ROM bits, two
S-boxes, one for encryption and one for decryption, occupy exactly one EAB.
Derivation of the cipher structure in economic configuration is straightforward
and contains only some additional multiplexers and counters.

We shall now discuss some aspects of MixColumn and InvMixColumn trans-
formations implementation. The complexity of these transformations is very dif-
ferent from the point of view of their implementation in FPD. Each of 32 output
bits of the MixColumn block is a function of 5 or 7 input bits. On the con-
trary, InvMixColumn’s output bits depend on 11 to 19 (!) input bits. Since LE
is optimized for implementation of 4-input logic functions, these large combi-
natorial functions have to be implemented in several levels, e.g. 5 or 7-input
functions in two levels and 17 or 19-input functions in 3 levels. This multilevel
logic slows down significantly the final cipher speed, especially in the decryption

Two Methods of Rijndael Implementation in Reconfigurable Hardware 85

logic. We have studied the possibilities to adapt function implementation to the
structure of available logic cells. While APEX family offers the possibility to
use high fan-in product term logic, this possibility could not be exploited, be-
cause product term logic is not suitable for XOR function mapping. Therefore
we have tried to take advantage of another feature of Altera FPD families - the
fast carry chain interconnections of neighboring logic cells. Although these inter-
connections are designed to implement fast arithmetic functions, they can also
be used for wide logic functions implementations. Advantage of this method is
that signal transitions via carry chain are several times (up to four times) faster
than the transitions through complete logic cell. Disadvantage of the method
lies in the fact that only neighboring cells can be interconnected. Unfortunately,
matrix multiplication in MixColumn, but especially in InvMixColumn transfor-
mations represents a huge logic function with a lot of interconnections. For this
reason, the use of carry chain for multiplication implementation has brought
some speed improvement (up to 20 %), but it did not attained our expectations.
Other negative aspect of the use of carry chains is their vendor specific character.
Nevertheless, we can conclude that the utilization of carry chains in Altera FPD
stays useful and we use them as often as possible in our cipher implementations.

3.2 Mapping Based on 8 x 32-Bit T-boxes

This approach was originally proposed for 32-bit processors [13]. From the point
of view of memory requirements, it is less attractive than method based on 8 x 8-
bit S-boxes, since in the worst case it uses 4-times more embedded memory. This
is clear disadvantage of this approach. On the other hand, in FPD with 4-kbit
EABs it uses just 2-times more EABs. Since the high performance FPD (e.g.
APEX devices) include relatively large embedded memories, these FPD can be
used for mapping fast cipher configuration based on larger 8 x 32-bit T-boxes.
Features and advantages of FPD implementation based on T-boxes are described
in this section.

T-boxes approach combines S-boxes and the MixColumn operation for the
encryption process into four 8 x 32-bit tables [13]

[S[a] @ 02] [S[a] @ 03]
Tl = | 5 nifa) = | 9o
| Sla) e 03 | | Sla] | "
a1 03] S|
Toa] = Sla] @02 Tsla] = Sla] @03
| Sla]] | Sla] e 02]

These tables with 256 4-byte word entries make up 4 Kbytes of total space.
Using these tables, the complete round transformation for a 32-bit block can be
expressed as [13]

ej = Tolao,;] ® Tila1j—1]) ® Trlas j—o] ® Tlas j—3] ® K; (7)

86 V. Fischer and M. Drutarovsky

where K is the round key in round j. Since MixColumn operation is not per-
formed in the last round of encryption algorithm, the last round have to be
specially handled: S-boxes have to be used instead of T-boxes. Fortunately, S-
boxes can be easily extracted from T-boxes: since all T;[a], i = 0,1,2,3 boxes
contain in some rows direct S[a] values, we can get substitution result by com-
bining T-boxes outputs of selected bytes (where S-box output value has not been
multiplied by the constants 02 or 03).

In order to use T-boxes approach for decryption, the cipher structure de-
scribed in Fig. [b have to be modified. This implementation aspect has been
anticipated in the design of Rijndael cipher [13]. The modified structure of de-
cryption algorithm (see Fig. H)) is the same, as the structure of encryption algo-
rithm, therefore T-box approach shown in Fig. [l can be directly used also for
decryption with the exception that new set of inverse T~ !-boxes must be used:

[S~1[a] e« OE S~1a] e OB
—1 571[0]009 -1 Sil[a].OE
Ty la = S~'a] e 0D T le = S~1[a] @ 09
| S~ '[a] @ 0B | | S~ *[a] @ 0D | «
[S~1[a) e 0D [S—1[a) ® 09
1 Sil[a].OB —1 Sil[a].OD
T, [a] = S~1[a] e O Ty [a] = S~1[a] ® 0B
| S~ *[a] @09 | | S7'[a] @ OF |

Since none row of T;l, j = 0,1,2,3 contains unmodified S~![a] values, ex-
traction of S~![a] values from T~!-boxes must be done by multiplication of se-
lected row by the multiplicative inverse in GF(2%) of the corresponding constant
(0E~'=FE5,09"! =4F, 0D ! = E1,0B~! = C0) according to equations

S7'a] =097 e[S [a] #09] = 4F e [S~'[a] 09] (9)
similarly
S7'al=E5e[S7'[a] @ 0E] = S7!a] = COe[S™'[a] @ 0B] (10)

Multiplication by these constants in GF(28) can be represented using following
bit-wise XOR operations

-1
S =x7 DT DTy DT2DT1 ST

1
S¢ =x7DxsDrsDa3drr Do
21

Sy~ =X D x5 D3 D2 ®T0

-1 _
S’l[x]:E5oX%s‘iliz‘r’@m@@@m (11)

83 =x7Dxs D3 D2

s5 ' =xXg ® X5 B Xo

sy =X7 D x5 D X4

—1
Sg =T Dxs ©r3 B T2 BT D X0

Two Methods of Rijndael Implementation in Reconfigurable Hardware 87

-1

Sy =X7BX4D Xy
1

Sg = Xg D X3 D Xo
1

85 :X5EBX2

S =4Fex - %1, ~ XX (12)
83 =7 DTy D3 dx1 DX
55 =7 D a6 DTy D13 D 12D 11 D o
s11 =26 x5 D 3 B T2 B T B To
o' = X5 X2 B Xo
s7' =27 @6 D4 BT Do
5" =7 @ 16 B T5 B T3 DT
5! =26 B 15 D14 D 72
-1

S7z]=COe X — z‘il:i;2i52%x):@x3@xl (13)
3t =
Sy =7 @ T D T4 D T2
51_12337EB$6@$5€B$3€B$1
351:x7@x5€9w2€9$1

Since equations ([Il)-(I3) enable to get the same S~![z] value, all output
bit values 8;1, i=0,1,...,7 of S7![z] can be computed as combinatorial logic
function with maximally 3 logical inputs (chosen from equations (II)-(T3]) and
typed in bold face) implemented within one LE. This function is implemented
in a “Multiplication elimination” block depicted in Fig.

4 Results of Implementation in Altera FPD

To map Rijndael algorithm into Altera FPD, the VHDL-based design method-
ology has been used. It should be stressed, that all presented results have been
obtained using timing analysis and implementation reports generated by Altera
MAX+PLUS II v.9.6 and QUARTUS v.2000.5 development tools. The results
of mapping based on 8 x 8-bit S-boxes are summarized in Tables and results
for 8 x 32-bit T-boxes in Tables HHL

Table 1. Fast configuration with 16 S-boxes and 128-bit data blocks in APEX
20KE200-1 (using 50 ESBs = 98% of total ESB count)

Logic Elements Used Speed (Mbits/s)
Encrypt | Decrypt Both Enc | Dec | Both
LE |[%| LE |% | LE | %
1257 | 15 | 1738 | 21 | 2493 | 30 | 964 | 694 | 612

88 V. Fischer and M. Drutarovsky

Registers —

Plaintext (128 bits) |

L&]

—»

Combinatorial function

—
4 %32 bits

[T-Sub(ROM) |

N\ MUX /,

e S ————

128 bits

|Mu1tip.c1imination |

Ciphertext (128 bits)|

Fig. 6. Cipher architecture based on T-boxes approach

Table 2. Fast configuration with 16 S-boxes and 128-bit data blocks
10KE200-1 (using 24 EABs = 100% of total EAB count)

Logic Elements Used

Speed (Mbits/s)

Encrypt

Decrypt

Both

Enc

LE

%

LE

%

LE | %

Dec

Both

1265

12

1801

18

2530 | 25

570

505

451

in FLEX

Table 3. Economic configuration with 8 S-boxes and 64-bit data blocks in ACEX
1K100-1 (using 12 EABs = 100% of total EAB count)

Logic Elements Used

Speed (Mbits/s)

Encrypt | Decrypt Both | Enc | Dec | Both
LE |%| LE |% | LE | %
1461 | 29 | 2006 | 40 | 2923 | 59 | 282 | 238 | 212

Table 4. Fast configuration with 16 T-boxes and 128-bit data blocks in APEX 1K400-1
(using 86 ESBs = 82% of total ESB count)

Logic Elements Used

Speed (Mbits/s)

Encrypt

Decrypt

Both

LE

%

LE

%

LE | %

Enc

Dec

Both

529 | 3

529

3

845 | 5

750

750

750

Two Methods of Rijndael Implementation in Reconfigurable Hardware 89

Table 5. Economic configuration with 4 T-boxes and 32-bit data blocks in ACEX
1K50-1 (using 10 EABs = 100% of total EAB count)

Logic Elements Used Speed (Mbits/s)
Encrypt | Decrypt Both Enc | Dec | Both
LE| % |LE| % | LE | %
824129 | 824 |29 1213 |42 | 115 | 115 | 115

5 Discussion

5.1 Comparison of Two Methods of Rijndael Implementation

Analyzing results given in previous section we can present next advantages of
the method using S-boxes approach:

— lower memory requirements for S-boxes implementation,
— no latency during encryption/decryption changing,
— very fast encryption, but significantly slower decryption.

As disadvantages of this method we can name:

— low-level of resources sharing,
— high count of logic elements used.

The second method based on T-boxes brings following advantages:

— faster overall cipher speed (for both encryption and decryption),

— high level of resources sharing, due to the symmetry of encryption/decryption

— very few logic elements used, because matrix multiplication is realized using
look-up tables.

The disadvantages of the second method are:

— relatively high latency when changing encryption to decryption and vice
versa — T-boxes have to be generated from S-boxes stored in one EMB (this
latency can be reduced to zero, if double amount of EMBs is used),

— double (or quadruple) memory needs for T-boxes implementations (one T-
box has 8 kbits, while one S-box has 2 kbits).

We can conclude that the first method could be better for applications, where
only encryption algorithm is used. On the contrary, the second method should
give better results if both encryption and decryption have to be fast. In the
economic version (where commutation latency is acceptable) T-boxes can be
computed from S-boxes stored in one EMB after each direction commutation. In
the fast version separate T-boxes can be used for both encryption and decryption.
This will reduce commutation latency to zero.

90 V. Fischer and M. Drutarovsky

5.2 Comparison with Known FPD Implementations

Several Rijndael cipher implementations have been published up to now. Table [0]
gives the FPD implementation results of encryption/decryption speed in the
feedback cipher mode published in [4] - ELB, [6] - DAN, [8] - GAJ and [10]
- MUT. For comparison NSA implementation in 0.5 pm ASIC [§] is included
as well. Figure [l compares known implementations in low-cost Altera FPD. It
can be seen, that our 16 S-boxes implementation is the fastest implementation of
Rijndael cipher in low-cost Altera FPD. T-boxes approach permits to implement
the Rijndael cipher in as small circuit as ACEX 1K50,leaving almost 60 % of
resources free! As it can be seen in Fig. B, the encryption/decryption in our fast
configuration based on T-boxes implementation is more than 80 % faster than
the fastest FPD implementation known to us. It can also be seen that S-boxes
approach for comparable Altera FLEX and Xilinx VIRTEX families gives similar
results.

Table 6. Results of Rijndael implementations

Logic Elements Used Speed Mbits/s

Fast (T-boxes, 128 bit blocks) 750
Fast (S-boxes, 128 bit blocks) 612
NSA 606

GAJ 414

DAN 353

ELB 300

MUT 248

Economic (S-boxes, 64 bit blocks) 212
Economic (T-boxes, 32 bit blocks) 115

6 Conclusions

In this paper we have evaluated the Rijndael cipher from the point of view of its
implementation in reconfigurable hardware. The implementation results given in
the previous sections depend significantly on the used FPD family. The Altera
ACEX FPD have been found to be an excellent solution for very fast Rijndael
cipher implementation in the reconfigurable hardware. Presented new solution
based on T-boxes allows implement Rijndael cipher with the same high speed
of encryption and decryption. On the other side, low-cost ACEX FPD family
is suitable for cost-sensitive encryption applications. Future development will
include integration of circuits for key exchange based on public-key schemes.
Although current implementation uses only 128-bit keys, extension to larger
keys (192 and 256 bits) requires just minor algorithm modifications and allows
reach higher security with only minimal additional development effort.

Two Methods of Rijndael Implementation in Reconfigurable Hardware 91

MBits/s TSITUKE - TSI France & Technical University
of Kosice, Slovakia
500 4+~ 451 GMU - George Mason University, USA
MUT - Military University of Technology,
400 - Poland
316
300 + 248 Implementations:
212 1) 16 S-boxes in FLEX 10K200E
200 + 2) 16 S-boxes in FLEX 10K130E
115 3) 16 S-boxes in FLEX 10K250
100 + 1 2 3 4 5 4) 8 S-boxes in ACEX 1K100E
5) 4 T-boxes in ACEX 1K50E
TS/ GMU MUT TSI/ TSI/
TUKE TUKE TUKE

Fig. 7. Comparison of known Rijndael cipher implementations in Altera FLEX 10K
and ACEX 1K FPD

MBits/s 750 TSI/TUKE - TSI France & Technical University
700 - of Kosice, Slovakia
612 NSA - National Security Agency, USA
— 606 GMU - George Mason University, USA
600 +— —
500 +
451 414 Implementations:
400 4 1) 16 T-boxes in 0,18 pnm APEX 20K400E
2) 16 S-boxes in 0,18 um APEX 20K200E
300 4+ 3) 16 S-boxes in 0,5 um ASIC
4) 16 S-boxes in 0,22 pm FLEX 10K200E
200 4 5) 16 S-boxes in 0,22 um VIRTEX XCV1000
100 7= 1 4 2 3 4 5
TSI/ TSI/ NSA TSI GMU
TUKE TUKE TUKE

Fig. 8. Comparison of fastest known Rijndael cipher implementations in feedback mode
for different FPD and ASIC

References

1. Advanced Encryption Standard. http://www.nist.gov/aes/

2. Nechavatal, J. at al.: Report on the development of the Advanced Encryption
Standard (AES). NIST [1], October (2000) 1-116

3. Weaver, N., Wawrzynek, J.: A Comparison of the AES Candidates Amenability
to FPGA Implementation. Proc. of The Third Advanced Encryption Standard
Candidate Conference, NIST, Gaithersburg, MD, April 13-14, (2000) 28-39

4. Elbirt, A. at al.: An FPGA Implementation and Performance Evaluation of the
AES Block Cipher Candidate Algorithm Finalists. Proc. of The Third Advanced
Encryption Standard Candidate Conference, NIST, Gaithersburg, MD, April 13-
14, (2000) 13-27

5. Gaj, K., Chodowiec, P.: Comparison of the hardware performance of the AES can-
didates using reconfigurable hardware. Proc. of The Third Advanced Encryption
Standard Candidate Conference, NIST, Gaithersburg, MD, April 13-14, (2000)
40-56.

92

10.

11.

12.
13.

14.
15.

16.
17.

V. Fischer and M. Drutarovsky

Danalis, A., Prasanna, V., Rolim, J.: A Comparative Study of Performance of
AES Final Candidates Using FPGAs. Submission for The Third AES Candidate
Conference, New York, March 21, 2000 available at [I]

Virtex series FPGAs. http://www.xilinx.com/products/virtex.com

Gaj, K., Chodowiec, P.: Hardware performance of the AES finalists-survey and
analysis of results. Available at http://ece.gmu.edu/crypto/

Fischer, V.: Realization of the Round 2 Candidates using Altera FPGA. Submitted
for The Third Advanced Encryption Standard Candidate Conference, New York,
March 21, (2000), available at [T]

Bora, P., Czajka, T.: Implementation of the Serpent Algorithm Using Altera FPGA
Devices. Public Comments on AES Candidate Algorithms-Round 2, available at
I

Mroczowski, P.: Implementation of the block cipher Rijndael using Altera FPGA.
Public Comments on AES Candidate Algorithms-Round 2, available at [1]

FLEX 10KE Embedded Programmable Logic Family. http://www.altera.com
Daemen, J., Rijmen, V.: AES Proposal: The Rijndael Block Cipher. Version 2,
September (1999) 1-45, available at [1]

Fischer, V. Realisation of the RIJNDAEL Cipher in Field Programmable Devices.
Proceedings of DCIS 2000, Montpellier, November (2000) 312-317

ACEX 1K Programmable Logic Family. http://www.altera.com

APEX 20K Programmable Logic Family. http://www.altera.com

Chodowiec, P., Gaj, K. Implementation of the Twofish Cipher Using FPGA De-
vices. Technical Report, George Mason University, July (1999) 1-24, available at
http://ece.gmu.edu/crypto/

	1 Introduction
	2 Rijndael Cipher Overview
	2.1 Basic Algorithm Characteristics
	2.2 Classification of Basic Cipher Operations and Choice of Technology

	3 Methods of Rijndael Mapping to FPD
	3.1 Mapping Based on 8 x 8-Bit S-boxes
	3.2 Mapping Based on 8 x 32-Bit T-boxes

	4 Results of Implementation in Altera FPD
	5 Discussion
	5.1 Comparison of Two Methods of Rijndael Implementation
	5.2 Comparison with Known FPD Implementations

	6 Conclusions
	References

