Skip to main content

Specification of Genetic Search Directions in Cellular Multi-objective Genetic Algorithms

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1993))

Included in the following conference series:

Abstract

When we try to implement a multi-objective genetic algorithm (MOGA) with variable weights for finding a set of Pareto optimal solutions, one difficulty lies in determining appropriate search directions for genetic search. In our MOGA, a weight value for each objective in a scalar fitness function was randomly specified. Based on the fitness function with the randomly specified weight values, a pair of parent solutions are selected for generating a new solution by genetic operations. In order to find a variety of Pareto optimal solutions of a multi-objective optimization problem, weight vectors should be distributed uniformly on the Pareto optimal surface. In this paper, we propose a proportional weight specification method for our MOGA and its variants. We apply the proposed weight specification method to our MOGA and a cellular MOGA for examining its effect on their search ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA: Addison-Wesley (1989).

    Google Scholar 

  2. Schaffer, J.D.: Multi-objective optimization with vector evaluated genetic algorithms. Proc. of 1st Int’l Conf. on Genetic Algorithms (1985) 93–100.

    Google Scholar 

  3. Kursawe, F.: A variant of evolution strategies for vector optimization. In H.-P. Schwefel and R. Männer (Eds.), Parallel Problem Solving from Nature, Springer-Verlag, Berlin (1991) 193–197.

    Chapter  Google Scholar 

  4. Horn, J., Nafpliotis, N. and Goldberg, D.E.: A niched Pareto genetic algorithm for multiobjective optimization. Proc. of 1st IEEE Int’l Conf. on Evolutionary Computation (1994) 82–87.

    Google Scholar 

  5. Fonseca, C. M. and Fleming, P. J.: An overview of evolutionary algorithms in multiobjective optimization, Evolutionary Computation 3 (1995) 1–16.

    Article  Google Scholar 

  6. Murata, T. and Ishibuchi, H.: Multi-objective genetic algorithm and its applications to flowshop scheduling. International Journal of Computers and Engineering 30, 4 (1996) 957–968.

    Google Scholar 

  7. Zitzler, E. and Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto Approach. IEEE Trans. on Evolutionary Computation 3 (1999) 257–271.

    Article  Google Scholar 

  8. Ishibuchi, H. and Murata, T.: A multi-objective genetic local search algorithms and its application to flowshop scheduling. IEEE Trans. on System, Man, and Cybernetics, Part C 28 (1998) 392–403.

    Article  Google Scholar 

  9. Murata, T. and Gen, M.: Cellular genetic algorithm for multi-objective optimization. Proc. of 4th Asian Fuzzy System Symposium (2000) 538–542.

    Google Scholar 

  10. Murata, T., Ishibuchi, H., and Gen, M.: Cellular genetic local search for multi-objective optimization. Proc. of the Genetic and Evolutionary Computation Conference 2000 (2000) 307–314.

    Google Scholar 

  11. Whitley, D.: Cellular Genetic Algorithms. Proc. of 5th Int’l Conf. on Genetic Algorithms (1993) 658.

    Google Scholar 

  12. Manderick, B. and Spiessens, P.: Fine-grained parallel genetic algorithms. Proc. of 3rd Int’l Conf. on Genetic Algorithms (1989) 428–433.

    Google Scholar 

  13. Wilson, D. S.: Structured demes and the evolution of group-advantageous traits. The American Naturalist 111 (1977) 157–185.

    Article  Google Scholar 

  14. Dugatkin, L. A. and Mesterton-Gibbons, M.: Cooperation among unrelated individuals: Reciprocal altruism, by-product mutualism and group selection in fishes. BioSystems 37 (1996) 19–30.

    Article  Google Scholar 

  15. Nowak, M. A. and May, M.: Evolutionary games and spatial chaos. Nature 359 (1992) 826–859.

    Article  Google Scholar 

  16. Wilson, D. S., Pollock, G. B., and Dugatkin, L. A.: Can altruism evolve in purely viscous populations? Evolutionary Ecology 6 (1992) 331–341.

    Article  Google Scholar 

  17. Oliphant, M.: Evolving cooperation in the non-iterated Prisoner’s Dilemma: The importance of spatial organization. in R. A. Brooks and P. Maes (Eds.), Artificial Life IV, MIT Press, Cambridge (1994) 349–352.

    Google Scholar 

  18. Grim, P.: Spatialization and greater generosity in the stochastic Prisoner’s Dilemma. BioSystems 37 (1996) 3–17.

    Article  Google Scholar 

  19. Ishibuchi, H., Nakari, T., and Nakashima T.: Evolution of Strategies in Spatial IPD Games with Structured Demes, Proc. of the Genetic and Evolutionary Computation Conference 2000 (2000).

    Google Scholar 

  20. Knowles, J.D., and Corne, D.W.: Approximating the nondominated front using the Pareto Archived Evolution Strategy, Evolutionary Computation (MIT Press), 8, 2 (2000) 149–172.

    Article  Google Scholar 

  21. Johnson, S.M.: Optimal two-and three-stage production schedules with setup times included. Naval Research Logistics Quarterly 1 (1954) 61–68.

    Article  Google Scholar 

  22. Daniels, R.L. and Chambers, R.J.: Multiobjective flow-shop scheduling. Naval Research Logistics 37 (1990) 981–995.

    Article  MATH  Google Scholar 

  23. Esbensen, H.: Defining solution set quality. Memorandum (No.UCB/ERL M96/1, Electric Research Laboratory, College of Engineering, Univ. of California, Berkeley, USA, Jan., 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Murata, T., Ishibuchi, H., Gen, M. (2001). Specification of Genetic Search Directions in Cellular Multi-objective Genetic Algorithms. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds) Evolutionary Multi-Criterion Optimization. EMO 2001. Lecture Notes in Computer Science, vol 1993. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44719-9_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-44719-9_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41745-3

  • Online ISBN: 978-3-540-44719-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics