Abstract
Object learning is an important problem in machine vision with direct implications on the ability of a computer to understand an image. The goal of this paper is to demonstrate an object learning-detection-segmentation-matching paradigm (Fig. 1) meant to facilitate image understanding by computers. We will show how various types of objects can be learned and subsequently retrieved from gray level images without attempting to completely partition and label the image.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Y. Amit, D. Geman, and B. Jedynak. Efficient focusing and face detection. In Face Recognition: From Theory to Applications, H. Wechsler et al. (eds.), 1997. NATO ASI Series F, Springer Verlag, Berlin.
F. L. Bookstein. Landmark methods for forms without landmarks: Morphometrics of group differences in outline shape. Medical Image Analysis, 1(3):225–244, 1997.
A. Colmenarez and T. Huang. Face detection with information-based maximum discrimination. In Proceedings of CVPR-’97, pages 782–787, San Juan, PR, 1997.
N. Duta. Learning-based Detection, Segmentation and Matching of Objects. Ph.D. thesis, Michigan State University, 2000.
N. Duta, A. K. Jain, and M. P. Jolly. Automatic construction of 2D shape models. To appear in IEEE Trans. Pattern Anal. and Machine Intelligence.
N. Duta, A. K. Jain, and M. P. Jolly. Learning-based object detection in cardiac MR images. In Proceedings of ICCV’ 99, pages 1210–1216, Corfu, Greece, 1999.
N. Duta, A. K. Jain, and K. V. Mardia. Matching of palmprints. Submitted, 2000.
R. Fisker, N. Schultz, N. Duta, and J. Carstensen. A general scheme for training and optimization of the Grenander deformable template model. In Proceedings of CVPR 2000, Hilton Head, SC, 2000.
A. Hill, C. J. Taylor, and A. D. Brett. A framework for automatic landmark identification using a new method of nonrigid correspondence. IEEE Trans. Pattern Anal. and Machine Intelligence, 22(3):241–251, 2000.
A. Jain, R. Bolle, and S. Pankanti. Introduction to biometrics. In Biometrics: Personal Identification in Networked Society, pages 1–41, A. Jain, R. Bolle and S. Pankanti (eds.). Kluwer Academic, Boston, 1999.
M-P. Jolly, N. Duta, and G. Funka-Lea Segmentation of the left ventricle in cardiac MRI images. Submitted to IEEE Trans. Med. Imaging, 2000.
A. Lundervold, N. Duta, T. Taxt, and A. K. Jain. Model-guided segmentation of Corpus Callosum in MR images. In Proceedings of CVPR’ 99, pages 231–237, Fort Collins, CO, 1999.
K. von Plessen, A. Lundervold, N. Duta, E. Heiervang, F. Klauschen, A. I. Smievoll, L. Ersland, and K. Hugdahl. Size and shape of the Corpus Callosum in dyslexic boys-a structural MRI study. Submitted, 2000.
H. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. IEEE Trans. Pattern Anal. and Machine Intelligence, 20(1):23–38, 1998.
H. Schneiderman. A Statistical Approach to 3D Object Detection. Ph.D. thesis, Carnegie Mellon University, 2000.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Duta, N., Jain, A.K. (2001). Learning-Based Detection, Segmentation and Matching of Objects. In: Singh, S., Murshed, N., Kropatsch, W. (eds) Advances in Pattern Recognition — ICAPR 2001. ICAPR 2001. Lecture Notes in Computer Science, vol 2013. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44732-6_45
Download citation
DOI: https://doi.org/10.1007/3-540-44732-6_45
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41767-5
Online ISBN: 978-3-540-44732-0
eBook Packages: Springer Book Archive