Abstract
In this paper, a new method for reconstructing 3-D shapes is proposed. It is based on an active stereo vision system composed of a camera and a light system which projects a set of structured laser rays on the scene to be analyzed. The depth information is provided by matching the laser rays and the corresponding spots appearing in the image. The matching task is performed by using Genetic Algorithms (GAs). The process converges towards the optimum solution which proves that GAs can effectively be used for this problem. An efficient 3-D reconstruction method is introduced. The experimental results demonstrate that the proposed approach is stable and provides high accuracy 3-D object reconstruction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Faugeras, O., Toscani, G.: The Calibration Problem for Stereo, Computer Vision & Pattern Recognition, Miami Beach, Florida, (1986) 15–20
Weng, J., Huang, T., Ahuja, N.: Motion on Structure from Perspective Views: Algorithms, Error Analysis and Error Estimation, IEEE Trans. on Pattern Anal. and Mach. Intell. Vol. 11(5), (1989) 451–476
Deriche, R., Faugeras, O.: 2D-curves Matching Using High Curvatures Points: Applications to Stereovision, In Proc. of 10th ICPR, Atlantic City, Vol. 1(1990) 240–242
Kanade, T., Okutomi, T.: A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiments, IEEE Trans. on Pattern Anal. and Mach. Intell. Vol. 16(9), (1994) 920–932
Saito. H., Mori, M.: Application of Genetic Algorithms to Stereo Matching of Images, Pattern Recognition Letters Vol. 16, (1995) 815–821
Voisin, Y., Marzani, F., Diou, A.: Calibration d’un Systéme de Vision par Lumiére Structurée, Graphics/Vision Interface, Montréal, Canada, (2000) 128–135
Marzani, F., Voisin, Y., Lew Yan Voon, LFC., Diou, A.: Active Stereo Vision System: a Fast and easy calibration method, In Proc. of ICARCV, Singapour, (2000)
Holland, J.H.: Adaptation in Natural and Artificial System, MIT Press, Cambridge, MA, (1975)
Roth, G., Levine, M.: Geometric Primitive Extraction Using a Genetic Algorithm, IEEE Trans. on Pattern Anal. and Mach. Intell. Vol. 16(9), (1994) 901–905
Huang, Y., Palaniappan, K., Zhuang, X., Cavanaugh, J.E.: Optic Flow Field Segmentation and Motion Estimation Using a Robust Genetic Partitioning Algorithm, IEEE Trans. on Pattern Anal. and Mach. Intell. Vol. 17(12), (1995)
Fan., K.C., Wang, Y.K.: A Genetic Sparse Distributed Memory Approach to The Application of Handwritten Character Recognition, Pattern Recognition, Vol. 30(12), (1997)2015–2022
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd, Extended Edition, Springer-Verlag, (1995)
Goldberg, D. E.: Genetic Algorithms in Search, Optimization & Machine Learning, Addison-Wesley, (1989)
S. Woo, A. Dipanda,: Matching Lines and Points in an Active Stereovision System Using Genetic Algorithms, In Proc. of IEEE ICIP’2000, Vancouver, Canada, Septembre 2000, Vol. 3, (2000) 332–335
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Woo, S., Dipanda, A., Marzani, F. (2001). Application of Genetic Algorithms to 3-D Shape Reconstruction in an Active Stereo Vision System. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2001. Lecture Notes in Computer Science, vol 2134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44745-8_32
Download citation
DOI: https://doi.org/10.1007/3-540-44745-8_32
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42523-6
Online ISBN: 978-3-540-44745-0
eBook Packages: Springer Book Archive