Skip to main content

Application of Genetic Algorithms to 3-D Shape Reconstruction in an Active Stereo Vision System

  • Conference paper
  • First Online:
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2134))

  • 1425 Accesses

Abstract

In this paper, a new method for reconstructing 3-D shapes is proposed. It is based on an active stereo vision system composed of a camera and a light system which projects a set of structured laser rays on the scene to be analyzed. The depth information is provided by matching the laser rays and the corresponding spots appearing in the image. The matching task is performed by using Genetic Algorithms (GAs). The process converges towards the optimum solution which proves that GAs can effectively be used for this problem. An efficient 3-D reconstruction method is introduced. The experimental results demonstrate that the proposed approach is stable and provides high accuracy 3-D object reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Faugeras, O., Toscani, G.: The Calibration Problem for Stereo, Computer Vision & Pattern Recognition, Miami Beach, Florida, (1986) 15–20

    Google Scholar 

  2. Weng, J., Huang, T., Ahuja, N.: Motion on Structure from Perspective Views: Algorithms, Error Analysis and Error Estimation, IEEE Trans. on Pattern Anal. and Mach. Intell. Vol. 11(5), (1989) 451–476

    Article  Google Scholar 

  3. Deriche, R., Faugeras, O.: 2D-curves Matching Using High Curvatures Points: Applications to Stereovision, In Proc. of 10th ICPR, Atlantic City, Vol. 1(1990) 240–242

    Google Scholar 

  4. Kanade, T., Okutomi, T.: A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiments, IEEE Trans. on Pattern Anal. and Mach. Intell. Vol. 16(9), (1994) 920–932

    Article  Google Scholar 

  5. Saito. H., Mori, M.: Application of Genetic Algorithms to Stereo Matching of Images, Pattern Recognition Letters Vol. 16, (1995) 815–821

    Article  Google Scholar 

  6. Voisin, Y., Marzani, F., Diou, A.: Calibration d’un Systéme de Vision par Lumiére Structurée, Graphics/Vision Interface, Montréal, Canada, (2000) 128–135

    Google Scholar 

  7. Marzani, F., Voisin, Y., Lew Yan Voon, LFC., Diou, A.: Active Stereo Vision System: a Fast and easy calibration method, In Proc. of ICARCV, Singapour, (2000)

    Google Scholar 

  8. Holland, J.H.: Adaptation in Natural and Artificial System, MIT Press, Cambridge, MA, (1975)

    Google Scholar 

  9. Roth, G., Levine, M.: Geometric Primitive Extraction Using a Genetic Algorithm, IEEE Trans. on Pattern Anal. and Mach. Intell. Vol. 16(9), (1994) 901–905

    Article  Google Scholar 

  10. Huang, Y., Palaniappan, K., Zhuang, X., Cavanaugh, J.E.: Optic Flow Field Segmentation and Motion Estimation Using a Robust Genetic Partitioning Algorithm, IEEE Trans. on Pattern Anal. and Mach. Intell. Vol. 17(12), (1995)

    Google Scholar 

  11. Fan., K.C., Wang, Y.K.: A Genetic Sparse Distributed Memory Approach to The Application of Handwritten Character Recognition, Pattern Recognition, Vol. 30(12), (1997)2015–2022

    Article  Google Scholar 

  12. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd, Extended Edition, Springer-Verlag, (1995)

    Google Scholar 

  13. Goldberg, D. E.: Genetic Algorithms in Search, Optimization & Machine Learning, Addison-Wesley, (1989)

    Google Scholar 

  14. S. Woo, A. Dipanda,: Matching Lines and Points in an Active Stereovision System Using Genetic Algorithms, In Proc. of IEEE ICIP’2000, Vancouver, Canada, Septembre 2000, Vol. 3, (2000) 332–335

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Woo, S., Dipanda, A., Marzani, F. (2001). Application of Genetic Algorithms to 3-D Shape Reconstruction in an Active Stereo Vision System. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2001. Lecture Notes in Computer Science, vol 2134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44745-8_32

Download citation

  • DOI: https://doi.org/10.1007/3-540-44745-8_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42523-6

  • Online ISBN: 978-3-540-44745-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics