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Abstract. We describe a new approach for authenticating a message 
using a finite pseudorandom function (PRF). Our "XOR MACs" have 
several nice features, including parallelisability, incrementality, and prov- 
able security. The finite PRF can be "instantiated" via DES (yielding 
an alternative to the CBC MAC), via the compression function of MD5 
(yielding an alternative to various "keyed MD5" constructions), or in 
a variety of other ways. The proven aecurity is quantitative, expressing 
the adversmy's inabiity to forge in terms of her (presumed) inability to 
break the underlying finite PFtF. This is backed by attacks showing the 
analysis is tight. Our proofs exploit linear algebraic techniques. 

1 Introduction 

A message authentication scheme enables two parties sharing a key a to authen- 
ticate their transmissions. This is one of the most widely used cryptographic 
primitives, and it may become even more so: as security concerns grow, it is 
reasonable to anticipate that virtually every transmitted message (or packet) 
will use cryptographic means to ensure authenticity. (For example, the ubiqui- 
tous use of message authentication is already being contemplated for the next 
generation of Internet Protocols.) 

Message authentication is usually accomplished by including with each trans- 
mitted message M a short string, called its "message authentication code" 
(MAC) or "signature," computed as a function of M and the shared key a. 
The most prevalent MAC is the "cipher block chaining message authentica- 
tion code" (CBC MAC) specified in the International Standard IS0 9797 [ISO] 
and the U.S. Standard ANSI X9.9 [X9.9]. In recent years another type of MAC 
has started to become prevalent: these are constructed by somehow "keying" a 
cryptographic hash, as in MAC,(=) = MD5(z.a) (see, for example, [Ts]). 

The goal of the present work is to provide new methods which have certain 
efficiency and security advantages. We call our methods "XOR schemes." They 
are simple to describe and implement. They use as their underlying primitive any 
finite pseudorandom function (PRF). In particular, a finite PRF can be defined 
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from a block cipher (e.g. DES) or from the compression function of a crypto- 
graphic hash (e.g., MD5) yielding concrete alternatives to the above mentioned 
MACs. 

What is an XOR MAC? At the highest level, the computation of an XOR 
MAC consists of three steps: (1) encode the message M as a collection of blocks 
(each block will depend on a small number of bits from the message); (2) apply 
the finite PRF to each of the blocks, thus creating a collection of PRF images (the 
MAC key a is the index for all of these PRF computations); and (3) XOR the 
set of PRF images together, building the MAC out of the result. Different ways 
of implement the encoding step (and different choices of the finite PRF) yield 
different XOR MACs. (Obviously not all encodings will result in secure MACs. 
We specify several simple ones which do, and also specify general conditions to  
determine which encodings work.) 

This paper specifies, for every finite PRF family F and every value of a block 
size b, two XOR MACs-a stateless (and probabilistic) one called XMACRFJ,, 
and a stateful (and deterministic) one called XMACCF,,. (In a stateful MAC the 
signer maintains information, in our case a counter, which he updates each time 
a message is signed.) The schemes are described concretely in Section 2, as are 
their main efficiency advantages, namely parallelizability and incrementality. 

Security of our schemes. Our XOR schemes are proven secure- we show 
that if the F is a “secure” finite PRF family then the MAC schemes based on 
it are also “secure.” In formalizing this, security of a finite PRF family means 
indistinguishability from a family of random functions in the sense of [GGM], 
while security of a MAC means it resists chosen message attack. To make these 
results meaningful for practice, the security in both cases is made quantitative: 
we measure the success probabilities as a function of the resources (time and 
chosen message queries) available to the adversary, and specify exact reductions, 
enabling the protocol designer to  compute, given some assumed security on the 
finite PRF, how many queries an XOR MAC based on it will withstand. This 
type of security analysis for a MAC, starting from a finite PRF, begins with 
[BKR]. 

Our XOR schemes are so simple that it is tempting to think one can easily 
find attacks. This is why we stress the importance of the proofs of security which 
show that no attacks short of breaking the underlying PRF will succeed. 

An advantage of quantified security is that it allows one to  compare the 
securities of different MACs based on the same finite PRF family. (Note that a 
concrete finite PRF family F, eg. a block cipher like DES, may possess strengths 
which are not reflected in the model of F being a finite PRF family, and these 
other strengths are potentially relevant in determining the strength of a MAC 
based on the block cipher. In making security determinations and comparisons we 
are treating the underlying primitives, eg. DES, as being known to only possess 
the properties which have been formally modeled, here the property of being 
a finite PRF.) We will see that our counter based MAC is “more secure” than 
our randomized one, and that both are “more secure” than the CBC MAC. 
In particular, the success probability of the adversary in the XOR schemes is 



17 

independent of the lengths of the messages in her chosen message attack (as long 
as they stay below a certain specified but very large length) while the attacks of 
[Kr, PV] show that the success probability of the adversary in the CBC scheme 
grows as a linear function of the message length. See Section 6. 

We also describe the best attacks we know on the XOR schemes. They use 
birthday attacks (collisions) and indicate that the analysis from our proofs is 
tight. 

2 

We begin by presenting concrete instantiations of our two main schemes using 
DES. (But we stress this is just an example. Other instantiations are possible, 
using other block ciphers, or even methods such as MD5, as discussed later.) We 
let I = 64 and L = 48. For any 56-bit key u and I-bit plaintext 2 we let Fa(z) 
be the first L bits of DES,(z). (We stress that Fa outputs only 48 bits, and not 
the full 64bi t  DES output. We have truncated the output because DES is a 
pseudorandom permertation, while what we want is a pseudorandom function.) 
Sender and receiver share a 56-bit DES key u which specifies Fa. 
Message formatting and notation. We assume the length IMI of M is a 
multiple of 32 bits, which can easily be achieved by a suitable padding. (For 
example, append a one and then append enough zeros to  bring the length to a 
multiple of 32 bits.) The message is then viewed as a sequence of 32-bit blocks, 
M = M[1]. . . M[n] with IM[i]J = 32 for i = 1,. . . , n. We assume that the number 
n of blocks is less than 231 -equivalently JMJ 5 32 * 231 = 236 bits- which 
would not normally be a significant restriction in practice. 

Let (i) denote the binary representation of block index i E (1,. . . , n} as a 
string of exactly 31 bits. (This is why we assumed the bound on n.) Let Q . p  
denote the concatenation of strings a and p. We give two schemes: 
Scheme XMACR. The first scheme is called the randomized XOR scheme, 
XMACR. To authenticate the message M = M[1]. . . M [ n ]  do the following: 
- Pick at random a 63-bit string r ,  hereafter called the seed - Set z = Fa (0 .?)@Fa (1. (I). M [ l])@Ja ( I. (2). 116 [ 2 1 ) ~ ~  * - CB Fa( 1. (n) . M [n] ) 
- Set the MAC of M to the pair p = ( r , z ) .  

Thus the sender will transmit (M, p).  The receiver, receiving (M’, p’), where 
p‘ = (r’, z’), computes z = Fa(O . r’)@Fa( 1 . (1) . M’[ I])@Fa( 1 . (2) . M’[2])@ . . . @ 
F,(1. (TI)  . M’[n]) .  The receiver accepts M’ if and only if z = z’. 

We stress that new coins are flipped to determine the seed each time the 
sender wants to authenticate a message, and also that the seed is included in 
the signature. 
Scheme XMACC . The second scheme is called the counter-based XOR scheme. 
Here it is required that the sender maintaina 63-bit counter C which is initially 0 
and is incremented for each message. (Thus at most 263 messages can be signed.) 
To authenticate message M = M[l]. . .M[n] do the following: 

The Schemes and Their Properties - Concretely 

- Increment the counter C by 1 
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- Set z = Fa(o.C)~Fa(1.(1).M[1])~Fa(l.{2).M[21)$.. -$F,(l.(n).lld(n]) - Set the MAC of 116 to the pair p = (C, z). 
Thus the sender will transmit (116, p).  The receiver, receiving (Ad’, p‘) where 
/A’ = (C‘,Z’), computes Fa(0.C’)~Fa(1.(1).Ad’[1])~F,(1.(2).M’[2])~...~ 
Fa(l. (n) . Ild‘[n]) and accepts iff this value equals z‘. Note the counter is in- 
cluded in the signature. Also the receiver maintains no state. 

Stateful schemes are not necessarily “worse” than stateless ones; program- . 
matically, a “static” variable is easy, but a good approximation to randomness 
is hard. We now discuss properties of XMACR and XMACC . 
Parallelisability. The DES computations on different blocks can be made in 
parallel. In general, the throughput of an XOR MAC can be doubled by doubling 
the amount (and not speed) of the underlying hardware. An environment where 
this is crucial is message authentication over high speed networks (where packets 
will flow over optical links at rates of 1-10 GBit/second). In that setting one 
cannot realistically use the CBC MAC because of its sequential nature; an XOR 
scheme is a more appropriate choice. Note that even in the software setting 
parallelizability can be relevant: with an adequate degree of parallelism, multiple 
machine pipelines can all be kept busy doing useful work. 

Incrementality. An XOR MAC is incremental [BGGl] with respect to block 
replacement. Suppose M[i ]  is modified to a new 32-bit value m. Then, for a 
long message M, one can update the MAC much quicker than it would take to 
re-compute it. Let’s illustrate for XMACR. Let p = (P, z) be a MAC of 114 and 
let M’ denote. M with block i replaced by m. To compute a MAC for M’, pick 
r’ at random and let Z‘ = zEBFa(0. r)EBF,(O. r ’ )@Fa( l .  (i) . M [ i ] ) $ F a ( l .  (i) .m). 
Then ( r ’ ,  z ’ )  is a MAC for M‘. Extensions of this scheme to support insertion 
and deletion of blocks (not just replacement) appear in [BGG2]. 

Out-of-order verification. Tag verification can proceed even if message blocks 
arrive out of order. Here it is only necessary that the each block be accompanied 
by its index. With other mechanisms MAC verification cannot proceed before 
the first block has been received, for example. Out-of-order MAC verification is 
useful since networks always have some degree of packet loss and re-transmission. 

DES computations. The number of DES computations is twice that of the 
CBC MAC. (The overhead can be reduced as discussed in Section 4 by increas- 
ing the block ske, currently set to 32, at the cost of reducing the maximum 
allowable message length.) So, in software, the above schemes are slower than 
the CBC MAC. But an XOR MAC based on DES is interesting for hardware 
efficiency, particularly for high-speed networks, or in settings where the incre- 
mentality compensates for the slower from-scratch MACing time. For a software- 
efficient XOR MAC use the MD5-based instantiation discussed later. 

MDb-based instantiation. A software-efficient XOR MAC would start not 
with DES but with a software-efficient PRF. For example, from the compression 
function of a cryptographic hash function, say md : (0, 1}640 + (0, l}las, one 
can define a finite PRF, say Fa(=) equals the first 64 bits of md(c .a), where 
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1.1 = 560 and 1.1 = 80. Using 48-bits for the block index, we would get a MAC 
which uses one application of md for every 512 bits of message. This is ae efficient 
as proposals like MD5(a. a) or MD5(a. a . a) which are currently being considered 
for the Internet, and has the advantages of parallelisability and incrementality. 
Security. Observe that including the block indices in the argument to Fa is 
necessary- if they are omitted, permuting the message blocks would leave the 
MAC unchanged. One can also see that the block containing the random string r 
(resp. counter) of XMACR (resp. XMACC) cannot be omitted. In other words, 
the scheme in which the MAC is set to  F,(1. (1). M[l])$Fa(l. (2). M[2])$. 
FJl. (n).M[n]) is easily broken-e.g., set Mi = A . B ,  M2 = A' .B ,  M3 = 
A .  B' and M4 = A'. B', and note that the MACs of MI, Ma, M3 sum to give 
the MAC of M4. 

The idea behind the nonces is to prevent the attacker from forming new 
MACs via linear combinations of old ones. This is in fact the only attack short 
of breaking the PRF. This is not obvious, of course; indeed it is far from clear 
why XMACR and XMACC should be secure. That is why we have our proofs. 

3 Definitions 

In order to prove the security we first need to provide appropriate definitions of 
security for block ciphers and message authentication schemes. 

We model block ciphers as finite pseudorandom functions in the manner of 
[BKR]. The underlying notion is the pseudorandom function notion of [GGM], 
appropriately tailored to take into account the fact that block ciphers have fixed 
input and output lengths that can't be treated asymptotically. This approach 
builds on a suggestion of [LuRa] that DES be viewed as a "pseudorandom in 
practice" function family. 

Denote by I E ~  the length of a string a. If i E (1,. . ., 2,,} is an integer then 
we denote by (i),, the natural binary encoding of i as an n-bit string. (Thus the 
(.) of Section 2 is (-)31 in our current notation.) If S is a set (resp. probability 
space) then a S denotes the operation of selecting an element uniformly at 
random from S (resp. at random according to the distribution specified by s). 
Finite pseudorandom function families. A function forniZy is a set of func- 
tions, and an associated set of strings called keys. Each key names a function in 
the family according to some fixed convention, and the function corresponding 
to key u is denoted Fa. (Note that two keys can name the same function.) To 
pick a function f at random from a family F means to pick a key a uniformly 
at random and let f = Fa; we write f F for this operation. For example DES 
is a function family where the set of keys is the set of all 56-bit strings. 

A family F has input length 1 and output length L if each f E F maps {O, 1)' 
to {0, l}L. (Eg. 1 = L = 64 for DES.) It has key length K if the associated set 
of keys is the set of all strings of length K .  The family of random functions with 
input length 1 and output length L is the family R of all functions mapping (0,1}' 
to (0, l}L. The key of a function f in this family is the string which describes 
its truth table. Note this is a very large family, consisting of 2&" functions. 
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A finite function family F is upseudorandom” if the input-output behavior of 
Fa “looks random” to someone who doesn’t know the key a. This is formali~ed via 
the notion of statistical tests [GGM]. Formally, such a test is an oracle algorithm 
A. Let F, G be finite function families. The advantage of A in distinguishing F 
from G is defined by 

The probability is over the indicated random choice of g and the coin tosses of 
A. 

Let family F have input length I and output length L, and let R be the 
family of random functions with the same parameters. To discuss security quan- 
titatively, we say that statistical test A [t,q,~]-breaks F if A runs in at most t 
steps, makes at most q oracle queries, and achieves AdvA(F, R) 2 E. (The running 
time here is measured in a standard RAM model of computation.) In informal 
discussion, the finite function family F is said to be [t, q,  €1-pseudorandom if 
there is no statistical test that [t, q,  €]-breaks F. (To be fully formal one ought t o  
consider also other parameters such as the “code she”.) In other words, in time 
t and given q examples one cannot distinguish a random member of F from a 
random function with advantage more than E .  

Notice that the key size of the finite PRF family F does not need to  be 
explicitly specified in the definition of security: its influence is captured in that 
it influences the values of t ,  q ,  E for which the F is [t, q, €1-pseudorandom. 

Message authentication. We provide formal definitions of schemes and their 
security in the exact security setting, We begin with stateless schemes, in which 
no counters or other state information need be maintained. Then we briefly 
indicate how the definitions should be updated to take account of state. 

A (stateless) message authentication scheme consists of a sagning algorithm 
Sig and a verifying algorithm Vf. The signing algorithm may be probabilistic; 
the verifying one typically is not. Associated to the scheme are parameters K. 
and Lsig describing the key length and signature length, respectively. On input 
a Id-bit key a and a message M, algorithm Sig outputs an L,ig-bit string p called 
the signature, or MAC, of M. On input a K-bit key a, a message 116 and an Lsig-  
bit string p, algorithm Vf outputs a bit, with 1 standing for accept and 0 for 
reject. We ask for a basic validity condition, namely that authentic signatures 
are accepted with probability one. 

An adversary for a message authentication scheme is allowed a chosen mes- 
sage attack, and declared successful if, following this attack, she produces a 
forgery. Formally the adversary is a probabilistic algorithm E which is given 
oracle access to the signer and verifier-more precisely, to Sig(a, .) and Vf(a, e l  0 )  

for a random but hidden choice of a. E can request a signature of a message of 
her choice; to  do this, she writes M on a special query tape. She can also ask the 
verifier to verify that p is a valid signature for M ;  to do this she writes (M, p )  
on a special query tape. E’s attack on the scheme is described by the following 
experiment: 
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(1) A random string a of length IC is selected as the shared secret. A random 
string rg is selected as the coin tosses of E. E now starts computing. 

(2) Suppose E makes a signing query M. Then the oracle computes a signature 
p Sig(a, M) and returns it to E. (Since Sig may be probabilistic, this step 
requires makhg the necessary underlying choice of a random string for Sig, 
anew for each signing query.) 

(3) Suppose E makes a verify query (M, p) .  The oracle computes the decision 
d = Vf(a, M, p )  and returns it to E. 

The adversary is allowed an adaptive chosen message attack, as in the notion 
of [GMR], but we also allow verify queries because, unlike the setting in digital 
signatures, E cannot compute the verify predicate on her own (since the verify 
algorithm is not public). Note that E does not see a nor the coin tosses of Sig. 

We say that E’s attack on M is a (qs, q,)-attack if during the course of the 
attack she makes no more than qs signing queries and no more than q, verify 
queries. A (qal q,)-attack is a ( t ,  ps, q,)-attack if, in addition, E runs for no more 
than t steps, in the RAM model of computation we fixed above. It is useful 
to say that a verify query (M, p )  is known-authentic if a signing query M was 
made prior to this verify query and the signature returned was p. Note validity 
implies that known-authentic verify queries are accepted. We thus assume of any 
adversary E that she never makes any known-authentic queries. 

The outcome of running the protocol in the presence of an adversary is used 
to define security. We say that E is successful if she makes a verify query (M, p )  
which is accepted but which is not known-a~thentic.~ (The verify query (M, p)  
in question is called a forgery, and the definition reflects the notion of existen- 
tial forgery [GMR].) We say that E [q,,q,,e]-breaks the scheme if her attack 
is a (qdl p,, €)-attack and her probability of success is at least e. We say she 
[t, q,, q, , €]-breaks the scheme if her attack is a ( t ,  q ,  , q,, €)-attack and her prob- 
ability of success is at least c. In informal discussion we’ll say the scheme is 
[ t ,  q a ,  q,, €1-unforgeable if there is no adversary who can [t, q,, q,, €]-break it. (TO 
be fully formal we would have to  consider also other parameters like the “code 
size .” ) 

In a stateful message authentication scheme the signer maintains state across 
consecutive signing requests. (For example, in our counter-based scheme the 
signer maintains a message counter.) In such a case the signing algorithm can 
be thought of as taking an additional input -the “current” state C, of the 
signer- and returning an additional output -the signer’s next state. We must 
modify the experiment describing E’s attack: in Step (1) we also have that C, 
is initialized to a value specified by the scheme; and in Step (2) we compute 
(p ,  CL) Sig(a, M, C,), then return p to the adversary and replace C, by Ci. 
Note the adversary doesn’t see the revised state (though in the stateful scheme 

’ This is slightly stronger than the more standard definition in which one would only 
ask that the message M was not a previous signing query. We make this stronger 
requirement because we achieve it and because it is useful in contexts like entity 
authentication. 
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function SigRF,,(a, M) 
r t (0, ; 
+ tagF,b(ai M, f )  

return ( r ,  z )  

of this paper this wouldn't matter). Also note that we allow the signer a state, 
but not the verifier. 

function VfRF,b(a, M', (r', 2')) 

if z = .d then return 1 
+ tagF,*(a, M'1rO 

else return 0 

4 The Randomized XOR Scheme 

We first present the general scheme, of which the scheme XMACR in Section 2 
is a special case, and then proceed to the security analysis. 
SPECIFICATION. Let F be a family of functions with key length n, input length I ,  
and output length L. We fix in addition a parameter b 5 1 - 1 which will be the 
block sire. We will assume that any message M to be authenticated has length 
at most IMI 5 b2i-b-1.  By standard padding arguments we may assume wlog 
that the message length is a multiple of b. We then regard M as a sequence 
of &bit blocks. The number of blocks is denoted llMllbl and with b understood 
the i-th block is denoted M [ i ] ,  for i = 1,. . ., IlMllb. Let r E (0, l}'-', and let 
a E (0,1}" be the shared key. We define tagF,a(a, MI r )  by 

F J 0 . r )  ~Fa(1.(1)I-b-l .M[l])$. . .$F,( l . ( n ) r - a - i . M [ n ] )  (1) 

We use this function in both the randomized and the counter-based schemes. 
We call r the seed. The (stateless) message authentication scheme is: 

We call XMACRF,~ the randomired XOR scheme based on function family F 
and using block size b. The validity condition is easy to verify. Note that the 
XMACR scheme of Section 2 is, in the current terminology, X M A C R F , ~ ~  with F 
being the family specified by Fa(-) = first 48 bits of the output of DES,(.). 
TRADING EFFICIENCY FOR MESSAGE LENUTH. Note that choosing different Val- 
ues of b will tradeoff the number of Fa computations with the allowable length of 
messages that can be signed. Namely, the scheme calls for 1+11M11b = l + ( ( M ( / b )  
evaluations of Fa and allows IMI to be b2I-"-' 80 that increasing b reduces the 
number of Fa evaluations at the cost of restricting the scheme to shorter mes- 
sages. For example, the XMACR scheme of Section 2, with b = 32, currently has 
twice the DES operations of the CBC MAC, and allows IMI up to 236. But we 
could set b = 48 and have only 33% more DES operations than the CBC MAC, 
now with )MI _< 48 * 216 = 3 * 219. 

SECURITY: INFORMATION THEORETIC CASE. Begin by thinking of F as ideal 
(i.e., truly random). Namely, we consider XMACRR,,, which we call the infor- 
mation theoretic case. The following theorem provides an absolute bound on the 
success of the adversary in terms of the number of sign and verify queries she 
makes. 
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Theoreml. Let R be the family of random functions with input length 1 and 
output length L,  let b be at most 1 - 1, and let E be any adversary making 
a (qs,qv)-ottack on X M A C R R , ~ .  Then the probability thot E i s  successful is at 
mast 6R = 29: .2- '+ qv . 2-L. dcf 

Proof. Due to page limits we provide a very brief sketch; for a full proof see 
[BGR]. The proof has two parts: first we relate the security of the scheme to the 
probability that a certain matrix has full rank; then we bound this probability. 

Since E is computationally unbounded she is wlog deterministic. The prob- 
abilistic choices in E's attack on the scheme are thus the initial choice a of key 
(naming a random function R, E R), and the choices of seeds made by the signer 
in the course of signing. Let Mi denote the random variable whose value is the 
i-th message whose signature E requests. Let Ri  be the random seed chosen by 
the signer to sign M; and let Zj  = tagR,*(u, M,, R,) denote its tag, i = 1,. . ., qs .  
Let Distinct be the event that R1, .  . . , R,, are all distinct and Succ the event that 
E is successful. By birthday bounds we can show that Pr [ -Distinct] 5 q: - 2l-l. 

Now we want to show that Pr [ Succ I Distinct] 5 qv . 2-L whence the theorem 
follows. 

Fix a particular sequence of messages MI, . . . , M,, , a particular choice rl, 
. . . , r,, E {0 ,  l]'-' of distinct seeds and a particular choice 21,. . ., z,, of Lbi t  
strings, for which Pr [ Mi = Mi and Ri  = r, and Zi = zi  for i = 1, . . . , q1 ] > 0. 
We let 

P r l [ . ]  = P r [ -  I Mj = Mi and R, = r i  and Zi  = z, for i = 1, . . . , ( I # ]  

denote the indicated conditional probability measure. (The probability is effec- 
tively over only the random choice of the shared key a, since everything else is 
fixed.) Fix a message M,,+1 distinct from MI,. . . , M g s ,  a seed rg,+l E (O,l}'-' 
and an L-bit string zg,+l. These are intended to stand for a possible forgery 
(Mg,+l, (rg,+l, zg,+l)). (Notice that although Mgs+l is distinct from previous 
messages, rp,+l is not assumed distinct from previous seeds- indeed, since the 
adversary may choose it, we cannot make such an assumption.) Below we will 
show that 

Prl [ tagR,b(a, M g s + l t r ~ s + l )  = 2 q s + 1 ]  5 2-L (2) 

Given this, standard conditioning arguments can then be used to show that 
Pr [ Succ I Distinct] 5 qv . 2 - L .  In what follows, we make the wlog assumption 
that E first makes its q, signing queries, and then makes its qv verify queries. 

Recall Mjb] E (0, l}b denotes the j-th block of M;. We define a qa + 1 by 
2' matrix B over GF(2). Its rows are indexed 1, . . . , qr + 1 and its columns are 
indexed by the 1-bit strings in lexicographic order. The entry in row i ,  column a 
is denoted B[i,  a], and is defined as follows. First consider the case where the first 
bit of 2 is 0, so that a = 0 .  y. Then we set B[i, a] = 1 if y = r; and 0 otherwise. 
Now suppose the first bit of E is 1, and write it as a = 1. ( j ) I - b - l .  y, where 
IyI = b. Then we set B[i,a] = 1 if M;[j] = y and 0 otherwise. (In particular, 
B[i, a] = 0 if j > IIMjllb.) Note the matrix is not a random variable-it is fixed 
given that MI,. . . , Mg,+l and r1,. . . , rq,+l are fixed. 
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LEMMA. The matrix B has full rank. 
PROOF. Transform B by row and column operations until it has a qI + 1 by 
qb + 1 identity matrix in its upper left corner. At any time, the left half of B 
means the first 2I-l columns and the right half means the rest. Initially the left 
(resp. right) half consists of those columns whose index has first bit 0 (resp. 1). 
Since r1, . . . , rq, are distinct, we can permute columns until the first qa rows 
of the left half of B consist of a qs by qs identity matrix followed by a qd by 

- qa matrix of zeroes. We now consider two cases. First if rq,+l is distinct 21- 1 

from r1, . . . , rq, then a single column swap suffices. The case when rq,+l = T a  

for some a E {l, . . . , q s }  uses that M is by assumption different from M, and is 
0 

Equation (2) is established via standard relations of linear to probabilistic inde- 
0 

Note the bound is independent of b the latter figures only in our assumption 
that any query M made by E above satisfies IlMllb 5 21mb-l. We stress that 
61 grows with the square of the number of signing queries: a "birthday" type 
behavior. Attacks we present later will show that this analysis and behavior is 
essentially the "best possible." 

SECURITY: COMPUTATIONAL CASE. We now assume we are given a family F 
which is not truly random, but [t', q', &]-pseudorandom. In that case, how secure 
is XMACRF, ,?  This is what the following tells us. It is the result of more direct 
interest in practice (although Theorem 1 is in some ways more basic). The con- 
stant c below depends only on details of the computational model. The proof is 
not too hard and can be found in [BGR]. 

Theorem2. There i s  an oracle machine U and a constant c such that the fol- 
lowing is true. Let F be a family of functions with input length 1 and output 
length L and let b be at most 1 - 1. Let E be an adversary who [ t , q I , q y , c ] -  
breaks XMACRF,b and suppose any message M an a query of E has a number 
llMllb of blocks which as bounded by  n. Let 6~ = 2qT. 2-' + qu . 2-L. Then UE 
[t', q', 6'1-breaks F ,  where 

more complex, requiring a few operations. 

pendence that have been used in several places (eg. [ABI, BeRo]). 

t' 1 t + C ( l +  L)q' ; q' = (qs + q u ) '  (n+ 1) ; d = 6 - 6 R .  

In other words if F is [t', q', d]-pseudorandom (the values t', q', E' depending on 
the key size and cryptanalytic strength of the finite PRF F) then XMACRF,~ 
is [t,q,,qu,s]-unforgeable, where t = t' - c(1 + L)q', qs + qu = q ' / ( n  + 1) and 
E = d + 6 ~ .  Thus a success probability of 633 for the adversary is unavoidable, 
even if the PRF is "ideal;" beyond that, the success of the adversary is bounded 
in terms of the parameters of the block cipher. 
ATTACKS. We present the best attacks we know. Since we think of F as pseudo- 
random, we will do the attack assuming it is in fact random; that is, we look at 
XMACRR,b where R is the family of random functions with input length 1 and 
output length L. Given q s ,  q,, we specify a particular adversary E who makes qs 
sign queries and q,, verify queries, and then outputs a forgery with probability 
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E = S t ( 6 ~ ) ,  where 61 = 2q: .2-' + qv . 2 - L .  The attack is based on birthday 
attacks, and finds enough collisions that linearity can be exploited. 

Proposition3. Let R Be the famiry of random functions with input Zength I and 
output length L ,  and let b be at most 1 - 1. Then there i s  a constant c > 
that for any qa,qv satisfying q: 5 2' and qv 5 2 L ,  there i s  an adversary 
[ t ,  q r ,  qv,  el-breaks XMACRR,~, where 

0 such 
E who 

Proof. We provide a very brief sketch; for a full proof see [BGR]. Given distinct b 
bit strings A', B' we show how to forge the signature of the message M4 = A' . B'. 
E chooses a bbit  string A $Z {A', B'} and a b bit string B $Z {A', B' ,A) .  She 
sets MI = A .  B ,  M2 = A'. B and M3 = A .  B'. She sets q = [ (qs - 1)/2]. Now 
she mounts the following attack- 
(1) For a = 1,2, she makes the signing query Mi a total of q times. Let ( P i j ,  zi,j) 

(2) She makes the signing query A63. Let (r, 23) denote the answer. 
Notice that the total number of signing queries made is 2q + 1 5 qo.  Now let Coll 
be the event that there exist j1, j, such that f l , j ,  = Ta , j2 .  Then: 
(3) If Coll is true then E sets p = ( r , z )  where z = Z1,jI$za,,,$z3. She then 

makes the verify query (M4, p). 
(4) Else, she picks a random r' E {0,1}1-1 and lets zi, . . . !z:% be distinct L-bit 

strings, for example the qv lexicographically least L-bit strings. She makes 
the qv verify queries (Ma, ( r ' ,  2;)) for j = 1,. . ., qu. 

Note the number of verify queries made is at most q,, . For the analysis first check 
that if Coll is true then E is successful in forgery; otherwise via step (4) she is 
successful with probability qv 2 - L .  To conclude we derive some birthday lower 

0 

The above indicates our analysis in Theorem 1 is tight up to small constant 
factors. Thus we have been able to give a pretty complete picture of the se- 
curity. Namely, because of Theorem 1, the attack in the proof of Proposition 3 
represents the best possible one (up to constant factors) short of breaking the 
PRF. We remark that the proof shows that the adversary forges the signature 
of essentially any message of her choice. This makes the attack all the more 
relevant. 

denote the answers, i = 1,2 and j = 1,. . . , q. 

bounds to show that Pr[Coll] is at least (1 - e-') . (4: - 3qo)/(4. 2')- 

5 The Counter-Based XOR Scheme 

Here we present another scheme, one which allows the signer to  maintain state 
in the form of a counter. The gain is greater security: the success probability of 
the adversary in the analogue of Theorem 1 does not depend on the number qs 
of signing queries at all (as long as the latter is bounded by a certain exponential 
function of I ) !  
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SPECIFICATION. Let F, I, L, a be as before, and o 6 {0,1}* the shared key.
The idea is to use the the same tagging function as above, but use the current
counter value as the seed. Formally the scheme XMACCj?,6 is specified by func-
tions SigCpj,, VfC .̂t- The signing function depends on a counter C maintained
by the signer; it is initially 0 and then incremented by the signing function itself.
(In Section 2 we loosely identified C with its 63 bit representation. Now we are
more precise, viewing it as an integer and writing (C)i-i for the corresponding
string.) The verifying function has no state. Below tagF b is the function specified
in Equation (1) of Section 4.

function SigC Fti{a, M, C)

return ((C, z), C)

function VfCj^a, AT, (C, z'))

if z = z' then return 1
then return 1

We call XMACCĵ j, the counter-based XOR scheme based on function family F
and using block size b. The validity of the counter-based XOR scheme is easy to
verify. Note that the XMACC scheme of Section 2 is, in the current terminology,
XMACCF,32 with F being the family specified by Fa(-) = first 48 bits of the
output of DESO().

As before the length of any message whose signature the adversary requests
is assumed bounded by 62I~6~1. But also we will now assume that the total
number of signing requests is bounded by 21"1. That is, we require that C not
exceed 21"1. (Typically, this is not a significant restriction.) These assumptions
are made in the theorems that follow.

SECURITY: INFORMATION THEORETIC CASE. There is a dramatic increase in
security: the success probability of the adversary now depends only on the num-
ber qv of its verify queries, rather than this plus 2g2 • 2~l. The proof is like that
of Theorem 1 and can be found in [BGR].

Theorem 4. Let R be the family of random functions with input length I and
output length L, let b be at most I — I, and let E be any adversary making a
(qa,qv)'attack on XMACC^j, where q, < 21"1. Then the probability that E is

successful is at most 6c = 9« • 2~L.

To see concretely what this improvement means, think of Fa — first 48 bits of
DESa, where we have J = 64 and L = 48. If q, = 220 and qv = 1, then the
success probability is a marginal 2~23 in the randomized scheme, but it is 2~48

in the counter-based one.

SECURITY: COMPUTATIONAL CASE. We get a corresponding improvement. The
proof is like that of Theorem 2 and can be found in [BGR].

Theorem 5. There is an oracle machine U and a constant c such that the fol-
lowing is true. Let F be a family of functions with input length I and output
length L and let b be at most I — I. For qs < 2'"1 let E be an adversary who
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[t,q,,qv,e]-breaks XMACCj?,!,, and suppose any message M in a query of E has
a number \\M\\t of blocks which is bounded by n. Let 6Q = qv • 2~L. Then UB

[*',«'.«']-breaks F, where

t' = t + c{l + L)q' ; q' = {q, +qv)-(n+l) ; e' = e - 6O •

Again, what this means is that if JP is [tt q', e']-pseudorandom then XMACCf,»
is [t, q,,qv,€]-unforgeable, where t = t' — c(l + L)q', q, + qv = q'/(n + 1), and,
most importantly, e = er +6c-

ATTACKS. The best attack is just to guess signatures! Furthermore one does not
expect better than the following (short of breaking the PRF) by virtue of the
above theorems.

Proposition 6. Let R be the family of random functions with input length I and
output length L, and let b be at most I —I. There is a constant c > 0 such that for
any qv < 2L, there is an adversary E who [t, Q,qv,e]-breaks XMACCj*,!,, where
t = c(l + L)qv and e = qv • 2~L.

6 Comparison with the CBC MAC
We compare the security of our schemes to that of the CBC MAC. First, let us
recall that scheme. Let F be a family of functions with input and output length
I. A message M = M[l] . . .Af[n] is viewed as a sequence of /-bit blocks. The
(full) CBC scheme is specified by the following:

function SigCBCFin(a, M[1].. .M[n])

for i *- 1 to n do jfc «— Fa( jfc_i©Af [t])
return yn

function VfCBCF,n(a, M', y!)

if fi = fi' then return 1
then return 1

The scheme is denoted CBC-MAC^n. We will consider the information theoretic
case. The following was proved in [BKR]. Let R be the family of random functions
of input and output length I, and let E be any adversary. Then the probability
that E [q,t qvt c]-breaks CBC-MACfl,n is at most 6OBC

 d= 3(n3+l)-(g,+qfv)
3-2"'.

To compare this to our schemes set L — I in Theorems 1 and 4. Clearly, 6R is
smaller than <5CBC, and 6C is considerably smaller than <5CBC;

 m particular, <5R
and 6c don't depend on n while 6OBO does, a significant difference.

Yet this by itself is not proof that our schemes are more secure, because
it may by that the analysis of [BKR] is not tight. In fact, however, there are
attacks (lower bounds) which indicate that the best improvement one could
hope for in their analysis would be that #CBC = ^("?? + 9«)2~'. This result
is due independently to Krawczyk [Kr] and Preneel and Van Oorschot [PV]—
what they show is an attack on the CBC MAC which succeeds in forging the
signature of a new message with probability fi(ngj) • 2~l, after having made
q, signing queries on n-block messages. Thus the dependence on n in 6CBC is
unavoidable.
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We comment that the CBC-MACp,, is only secure for fixed n; the scheme 
must be modified to  accommodate n’s of varying length. In contrast, both 
XMACRF,, and XMACCp,b operate on inputs of varying lengths (with the secu- 
rity bounds given by our theorems). 
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