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Abstract. This paper presents a new algorithm for cryptanalytically 
attacking stream ciphers. There is an associated measure of security, the 
2-adac 8pan. In order for a stream cipher to be secure, its Zadic span 
must be large. This attack exposes a weakness of Rueppel and Massey's 
summation combiner. The algorithm, based on De Weger and Mahler's 
rational approximation theory €or 'Ladic numbers, synthesizes a shortest 
feedback with cam shaft q w t e r  that outputs a particular key stream, 
given a small number of bits of the key stream. It is adaptive in that it 
does not neeed to know the number of available bits beforehand. 

Indm Terms - Binary sequences, feedback with carry shift registers, 
cryptanalysis, rational approximation, 2-adic numbers. 

1 Introduction 

In this paper a new general purpose attack on stream ciphers is presented. This 
attack can be used successfully, for example, against Rueppel and Massey's sum- 
mation combiner [16, 191. All future stream cipher designers will need to consider 
resistance to this attack. 

The 'development of cryptosystems tends to alternate between the design of 
new systems that resist known attacks, and the design of new attacks against 
systems. Often such attacks are highly specialized and only work against partic- 
ular systems. Occasionally a very general attack is found that can potentially be 
used against a large class of cryptosystems. Examples include differential crypt- 
analysis, which can be used against many round based block ciphers such as 
DES, [l], and the BerlekampMassey algorithm [15], which can be used against 
stream ciphers. Sometimes we can numerically measure the extent to which c ryp  
tosystems resist a particular attack. This is the case with the BerlekampMassey 
algorithm: the h e a r  span of a binary sequence S is the size of the smallest linear 
feedback shift register (or LFSR) that generates S. The higher the linear span of 
a sequence, the greater the resistance to the BerlekampMassey algorithm when 
S is used as the key in a stream cipher. Thus when a cryptographer designs a 
new stream cipher, it is imperative that she show that the key stream has large 
linear span. 
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As with the BerlekampMassey algorithm, the method of cryptanalysis de- 
scribed in this paper has an associated measure of security, the &a& span. There 
is a precise way in which the BerlekampMassey algorithm can be thought of as 
a rational approximation algorithm in the ring of power series with integer coef- 
ficients. Simiiarly, the new attack can be thought of as a rational approximation 
algorithm in the ring of 2-adk integers. The BerlekampMassey algorithm is 
closely related to continued fractions [3, 4, 13, 17, 221. Over the 2-adic numbers, 
however, continued fractions fail to converge in general. The algorithm presented 
here is based on Mahler and De Weger's lattice theoretic substitute for 2-adic 
continued fractions [12, 211. Unlike Mahler and De Weger's approach, our algo- 
rithm is adaptive. The number of known bits of key stream does not need to be 
determined before the algorithm can be executed. Another nonadaptive 2-adic 
rational approximation algorithm was discovered by Gregory and Krishnamurthy 

Recall that a stream cipher is a private key system in which the message, a 
binary sequence, is encrypted by adding it bit by bit modulo two to a key stream, 
which is another binary sequence. The key stream is known to the legitimate 
receiver of the message who can thus recover the message by adding the key to 
the ciphertext. Individual stream ciphers are defined by the manner in which 
the key is generated. A cryptosystem (or the associated key) is secure if the 
message cannot be determined by an eavesdropper who does not know the key. 
A cryptosystem is generally only considered secure if it is secure against a known 
plaintext attack. In the case of stream ciphers, this means that an eavesdropper 
should be unable to determine the key even if part of the key is known. 

For an attack to be practical, it must also be possible for the eavesdropper to 
generate the key at a rate commensurate with the rate at which it is generated by 
the sender of the message. The power of the Berlekamp-Massey algorithm is that 
it produces a description of a fast device - a short LFSR - that generates the key, 
if such a device exists. Recently, a new class of feedback registers, feedback with 
carry shaft registers or FCSRs was developed "7, 91. These registers are designed 
to quickly output the 2-adic representation of a rational number. Moreover, they 
have associated with them a number of algebraic structures that are analogs of 
the algebraic structures used to analyze linear feedback shift registers. 

When FCSRs were originally described by Klapper and Goresky, no adaptive, 
provably convergent algorithm was known for synthesizing FCSRs from short 
prefixes of eventually periodic sequences. The algorithm described in this paper 
fills this gap. It proceeds in two stages. The eavesdropper is assumed to have 
access to the first few bits of the key stream ao,, al, .. A rational approximation 
algorithm (described in Section 3) is used to find the best rational approximation 
p / q  to the 2-adic number cy = Cz-, ~ r i 2 ~ .  This approximation will be best in the 
sense that, for all approximations that are accurate modulo a particular power 
of 2, the maximum of IpI and 141 is as small as possible. We show that if in 
fact cy is rational, cy = pf /q ' ,  then our rational approximation algorithm finds 
the reduced rational representation of Q if [2log(max(lp'l, lqfl))l  + 2 bits are 
known (see Theorem 6).  This is approximately twice the size of the smallest 

[GI. 
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FCSR that generates the key (see Corollary 8) .  Thus the rate of convergence 
of our algorithm is analogous to that of the BerlekampMassey algorithm. The 
complexity of our algorithm is U(T2 log T log log T ) ,  where T is the number of 
known bits. This exceeds the complexity of the BerlekampMassey algorithm 
only by the log factors. Once the rational representation of a is found, there is 
a fast algorithm for finding an initial loading of a FCSR that outputs a. This is 
described in Section 4. 

It follows that any key stream that can be generated by a small FCSR (or 
euivalently, whose associated 2-adk number is a rational number p / q ,  with ( P I  
and IqI small) leads to an insecure stream cipher. This fact gives rise to a security 
measure. 

Definition 1. The bad ic  span of an eventually periodic sequence a = ao, a l ,  * . . 
is the number of bits of storage used by the smallest FCSR that generates a. It 
is denoted by Az(a). 

The idea of cryptanalysis using FCSRs is that if a key stream can be gener- 
ated by a short FCSR, and we can determine this FCSR efficiently from a small 
subsequence of the key stream, then we can construct an efficient generator for 
the key stream. It may not be the same device that was originally used to gen- 
erate the key stream, but this is immaterial to the cryptanalyst. Thus in order 
for a stream cipher to be secure, its key stream must have large 2-adic span. In 
the conclusions we describe the effect on the security of a well known key stream 
generator, the summation combiner [16, 191. 

2 Review of Feedback with Carry Shift Registers 

In this section we describe FCSb and some of their basic properties. Details of 
the construction and results in this section may be found in [7, 91. 

F C S h  are based on division in the ring of 2-adic integers. Recall that a 
2-adic integer is a series CEO a,ai, ai E (0, l}, where we have replaced the 
indeterminate z by the integer 2. Addition and multiplication are defined term by 
term as for ordinary integers. The set of 2-adic integers forms a complete valued 
ring ZZ. The ordinary rational numbers intersect Z2 in the set of rationals with 
odd denominator or, equivalently, in the set of 2-adic integers whose sequence 
of coefficients is eventually periodic. See [ll] for background on 2-adic numbers. 

Definition2. ([7, 91) The FCSR with connection integer q = -1 + El=, qi2*, 
qi E (0, l}, is a device with r bits of storage plus an auxiliary memory containing 
an integer. If the auxiliary memory is m, and the contents of the register consists 
of the T bits (Qr-1, ~ r - 2 , .  . . , al ,  ao), then the operation of the shift register is 
defined as follows: 

Al.  Form the integer sum 0 = EL=, q k a r - k  + m. 
A2. Shift the contents one step to the right, outputting the rightmost bit ao. 
A3. Place a, = B mod 2 into the leftmost cell of the shift register. 
A4. Replace the memory integer with m = (0 - ar)/2 = t0/2]. 
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Fig. 1. Feedback with Carry Shift Register 

The integer q is referred to as the connection integer because it is the analog of 
the connection polynomial associated with a LFSR. Notice that 90 = -1 does 
not correspond to a feedback tap. A FCSR is depicted in Figure 1. 

We have the following facts about FCSRs 

Theorem 3. 

I .  The output from a FCSR is eventuallg periodic. If q i s  the connection integer, 
then the 2-adic number associated with the output sequence is  a rational 
number of the form p i g .  

2. Conversely, if p is any integer, then the 2-adic expansion of the rational 
numberplq can be realized as the output of a FCSR with connection integer q. 
At tames we identifg p / q  with its associated 2-adic number and its associated 
sequence of coeficients and simply refer to p / q  as the output of the register. 

qi2i and initial memory 
m. Suppose 0 2 m 5 [{i ; qi = 1}1. Then this condition holds throughout 
the operation of the register. Also, this condition holds for strictly periodic 
p lq .  Thus for these sequences the space required for the auxiliary memoqj is 
fewer than log r bits. 

5. Adding b to the memory of a FCSR with connection integer q changes the 
2-adic value of the output by  -b2P/q. 

3. The rational number p / q  i s  strictly periodic if and only i f  -q < p 5 0. 
4. Consider a FCSR with connection integer q = 
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3 The Rational Approximation Algorithm 

In this section we present an algorithm for synthesizing FCSh.  The goal is to 
d e j  find the rational approximation p / q  to a given 2-adic number a with @(p, q )  = 

max(lp1, lql) minimal. For eventually periodic sequences, this quantity is related 
to the 2-adic span by Theorem 7. If a is eventually periodic, the algorithm finds 
the precise rational representation p / q  of a if 12 log(@@, q))1+ 2 consecutive bits 
of a are known. It follows that the number of bits of a needed to find such a 
register is at most 2A2(a) + 2 [log(A2(a))l + 4. 

Assume we have consecutive terms ao, al , . . . of a binary sequence a which is 
the 2-adic expansion of a number a. We wish to determine integers p and q such 
that Q = p / q .  The algorithm proceeds by computing successive approximations 
91/92 to a such that at stage k 

a - g2 - g1 2 0 ( mod 2k). (1) 
The algorithm is given in Figure 2. It is based on Mahler and De Weger's lattice 
theoretic approach to padic rational approximation [12,21], but has the advan- 
tage that the number of known bits of a need not be predetermined. Each new 
bit that is found with certainty leads to a better approximation. The symbols 
f = (fi, f2)  and g = (g1,92) denote pairs of integers. Note that the minimization 
steps can be performed by a pair of integer divisions. This is explained in more 
detail in the last paragraph of this section. 

To understand the algorithm some notation is useful. For any h = (hl, h2) E 
Z x Z ,  let h(a)  = a h2 - hl. Let L k  = {h : h(a)  = 0 mod zk} E z X z. 
Thus the goal of the algorithm is to find the element of L k  with h2 odd and 
the minimum value of @ over all elements of L k  with ha odd. The set Lk is a 
Z-lattice - a finitely generated module over Z. De Weger characterized bases for 

Lemma4. The pair f ,g  is a basis for L k  if and on1g if I fig2 - fig11 = 2k. 

Lk follows. 

Correctness of the algorithm is proved by the following lemma. 

Lemma5. A t  each stage we have 

1. f and g are in La; 
2. (f, g) i s  a basis for Lk ; 

4. g minimizes @ over all elements of Lk with 92 odd. 
5. f minimizes 9 over all elements of Lk with fi and f2  even. 

3. f E 2(z x z) - Lk+l; 

Proof: We prove this by induction. It is straightforward to check that the con- 
ditions hold initially. 

Let us suppose that the conditions hold at stage k. If g(a) 3 0 mod 2k+1, or 
equivalently, g E &+I, then it is again straightforward to check the conditions. 
Therefore, assume g $! Lk+1. We treat the case when @(g) < @(f). The other 
case is similar. 

Let f' and g' be the new values after updating. 
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Rational-Approximation() 

begin 

a = a0 + a1 . 2  + - .  - + O k - 1  

f = (012) 
g = ( 2 k 5  1) 

hplltaoIal,.--,ak-1 =o1whereao=. . .=ak-2,andak-1 = 1  
2k-1  

while there are more known bits do 
Input ak 

L a = c r + a k 2  
if g(a) z 0 mod 2'+' then 

else if O(g) < @ ( f )  then 
f = 2 f  

(9, f )  = ( f  + dg, 2g) 

( s , f )  = (9+dfl2f)  

Let d be odd and minimize O(f + dg) 

else 
Let d be odd and minimize @(g + df) 

fifi 
k = k + l  

od 
return g 
end 

Fig. 2. The 2-Adic Rational Approximation Algorithm. 

1. We have 

since f a d  g are h Lk - Lk+l and d iS odd. It follows that g' E L k + l .  AhO, 
g is in L k ,  so f' = 29 is in L k + l .  

2. By De Weger's lemma, we have I f i g 2  - fig11 = 2k. Therefore I f i g ;  - RgiI  = 
l2gi(fi+dg2)-2g2(fi+dgi)l = \ 2 ( f i g 2 - f i g i ) l  = 2"+'. Again by De Weger's 
lemma, g', f' is a basis for & + I .  

3. We have g E Z x Z - & + I ,  so f '  = 29 E 2(Z x Z) - L k + 2 .  
4. Suppose that minimality fails. By the fact that f ' , g '  form a basis for &+l,  

this means that there are integers a and b so that 
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and ag$ + b f i  is odd. The latter condition is equivalent to a being odd since 
f$ is even and g; is odd. By possibly negating both a and b, we can assume 
a is nonnegative. Further, if a = 1 ,  then ag' + bf' = f + (d  + 2b)g and this 
Contradicts the choice of d in the algorithm. Thus we can assume that a > 1. 
Equation (2) can be rewritten 

@(af  + (ad + 2 b ) g )  < @(f + dg).  

Let c be the odd integer closest to d+  2b/a. Then ( c -  ( t i  t 2b/a)l 5 ( a -  l ) / a .  
It follows that 

@ ( f + c g ) = @ ( f +  ( d C ? ) g +  ( c -  ( d + ? ) ) g )  

= @(f + ddl 
where we have used the triangle inequality for @, and inductively used the 
minimality condition on g .  This contradicts the choice of d. 

5. Suppose there is an element h' E Lk+l  with hi and ha even, such that 
@(h') < @(f') = 2$(9). We can write h' = 2h for some h E Lk. If both hl 
and h2 are even, then @(h) < @ ( g )  < @(f) by the inequality in the algorithm 
leading to this case. This contradicts the minimality of f .  If h2 is odd, then 
@(h) < @ ( g )  contradicts the minimality of g .  It is impossible that hl is odd 

0 

We observe that point ( 5 )  of the lemma is not strictly necessary for conver- 
gence of the algorithm. In fact, the algorithm runs correctly if we always update 
g and f by the first method of update, independent of the relation between @(f) 
and @ ( g ) .  However, point ( 5 )  ensures that the size of f is small and leads to 
better bounds on the complexity. 

Suppose the input sequence to the algorithm is, in fact, an eventually periodic 
sequence giving a rational 2-adic a = p / q .  We want to know how many iterations 
of the rational approximation algorithm are required to output @, q). 

Theorem 6 .  Suppose a = aol al,  a 2 , .  . . i s  an eventually periodic sequence with 
msociated 2-adic number a = C ai2i = p / q ,  p ,  q E 2, and gcd(p, q )  = 1. Then 
the 2-adic rational approximation algorithm outputs (p, q )  if T 2 r2 log @(p, q) ]  + 
2 bits are used. 

and h2 is even for Ic 2 1 since h(a)  = 0 mod 2k. 
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Proof: The output from the algorithm is a pair (g1,gZ) satisfying g1 - a g z  z 
0 mod 2T. Hence g1q = pg2 mod 2T. By the @-minimality, we have @(gI,gz) 5 
@(p,q). It follows that 1g1q1 5 @(p,q)2 5 2T-2 and lpg2I 5 9 ( p , q ) 2  5 2T-2. 
Therefore, 91/92 = p / q .  Again by the 9-minimality, we must have gl  = p and 
g2 = Q. 0 

It is preferable to bound the number of bits needed by the 2-adic span (the 
size of the smallest FCSR that outputs a). The 2-adic span is related to 9 by 
the following. 

Theorem 7. If a = CEO ai2i = p / q  is the rational number corresponding to a, 
reduced to lowest terms, then the badac span is bounded b y  

rlog@(p,q)i - rwog9(p ,q ) i  I x 2 ( 4  I pogQiol,q)i + rloglogQsol,q)i . 

x 2 ( 4  - r10g(x2(a))i - 1 I r iogw,q ) i  I ~ ~ ( 4  + r i o g ( ~ ~ ( a ) ) i  + 1. 

It follows that 

This gives the desired bound. 

Corollary8. Suppose a is an eventually periodic sequence with associated 2- 
adic number a = p / q ,  gcd@,q) = 1. Then the 2-adic rational approximation 
dgorithm outputs (p, q)  if T 2 2Xz(a) + 2 rlog(Xz(a))l + 4 bits are used. 

In implementing the algorithm, the value of d can be found by division. For 
example, suppose we are in the case where g ( a )  f 0 mod 2"l and @(g)  < @(f). 
If g1 # f g l ,  then d is an odd integer among the four odd integers immediately 
less than Or greater than (fi - fi)/(g1 - 9 2 )  and -(f~ + f2)/(g1 + 92) .  Thus 
it suffices to consider the value of @( f + d g )  for these four values of d. When 
g1 = fg2, one or the other of these quotients is not considered, and in the second 
m e  of the algorithm, the roles o f f  and g axe switched. 

4 

Now let us show how to construct a FCSR which generates the bit sequence 
for a given rational number p / q .  We assume q is a positive odd integer and let 
T = Llogz(q + 1)J . Write q = qi2i with qo = -1 and qi E {0,1} for i > 0. 
We want to determine the initial setting (including the extra memory) of the 
FCSR with connection integer q that outputs the 2-adic expansion of p / q .  The 
number of nonzero taps in such a FCSR is t = wt(q + l), the Hamming weight 
of the binary expansion of q + 1. The initial setting is related to p and q by the 
following proposition. 

Proposition9. Suppose a FCSR with connection integer q = Cb, qi2i is set 
up with initial setting ao, . . - ,  a,-l and initial memory m.  Then its output is the 
2-adic expansion of the fraction p / q  where 

Initial Loading of a FCSR 

7-1 k 

k=O i=O 
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Furthermore, if we let x = aj2j, then the double sum in equation (3) 
is the product qx with all products of terms whose indices sum to r or more 
omitted. Such a double sum can be computed essentially as quickly as the full 
product qx. It follows that, for a given fraction p / q ,  the initial loading can be 
derived by the following steps. 

B1. Compute a0 + a1 2 + . . + ar-12'-* = p / q  mod 2p. In general computing 
modular quotients is apparently hard. However, when the modulus is a power 
of a prime they can be computed efficiently. It is straightforward to do so in 
time O(r2). 

B2. Compute y = C;:: C:, qiak-iak, say by a modified multiplication algo- 
rithm. 

B3. Compute m = (y - ~ ) / 2 ~  in time O(r) .  

- , a,-l m the initial loading and rn as the initial 
memory in a FCSR with connection integer q. This FCSR will output the 2-adic 
expansion of p / q .  Of course if p and q have been determined by the ratianal 
approximation algorithm, then we already have the initial loading ao, * * ,  Or-1 

and need only determine the initial memory rn from steps (B2) and (B3). 

We can then use ao, 

5 Complexity Issues 

Suppose the rational approximation algorithm is executed with a sequence a 
which is eventually periodic, with rational associated 2-adic number a = p / g .  
Let X be the 2-adic span of a. Then the rational approximation algorithm takes 
T = 2X + 2 rlog(X)1 + 4 steps. 

Consider the kth step. If g(a) f 0 mod 2'+l, then we say that a discrepancy 
has occurred. The complexity of the algorithm depends on the number of dis- 
crepancies. To simplify the computation of a g 2 ,  we maintain afi as well. When 
no discrepancy occurs, these values and the value of f can be updated with k 
bit operations. 

Suppose a discrepancy occurs. The minimization step can be done with two 
divisions of k bit integers. The remaining steps take time O(k).  Then ag2 and 
at2 can be updated with U ( k )  bit operations and two multiplications of k bit 
integers by d. 

Let D be the number of discrepancies, and let M be the maximum time 
taken by a multiplication or division of T bit integers. The Schonhage-Strassen 
algorithm [ZO], gives M = O(T1ogT loglogT). This can be improved to M - 
r log r using Pollard's nonasymptotic algorithm and Newton interpolation for 
T < 237 on a 32 bit machine or T < 270 on a 64 bit machine [MI. These are 
ranges that are typical in current usage. 

When T bits of input are used, this form of the algorithm guarantees that 
both f and g have at most T bits. This follows for g because (a mod 2k, 1) is in 
L k ,  and by induction for f since the f at stage k requires at most one nore bit 
than the maximum required by f and g at stage k- 1. The complexity of the algo- 
rithm is thus 4 D M +  O(T2).  Strictly in terms of T, this is U(T210gTloglogT). 
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However, if the sequence is chosen so the number of discrepancies is small, the 
complexity is lower. In particular a cryptographer designing a stream cipher 
should try to choose sequences for which many discrepancies occur. 

6 Conclusions 

We have exhibited an algorithm for synthesizing a minimal size feedback with 
carry shift register that outputs a sequence given a relatively small number of 
its bits. This is a general approach to attacking stream ciphers, and 2-adic span, 
the associated security measure, must now be considered whenever cryptologists 
design stream cipher. 

This approach can be used to attack Massey and Rueppel's summation com- 
biner [16, 191. In their setup, the outputs from several short maximal period 
LFSRs (the outputs of such sequences are called m-sequences) with pairwise rel- 
atively prime periods are combined using addition with carry. It has been shown 
that the linear span of the resulting sequence tends to be close to the period 
of the sequence. This period is the product of the periods of the m-sequences, 
and is exponentially larger than the sizes of the original LFSRs. For this reason, 
summation combiners have been suggested for use in stream ciphers. 

However, addition with carry is precisely addition in the 2-adic numbers. 
(In fact, it was this observation that motivated this work.) If a and b are two 
sequences, and c is the result of combining them with a summation combiner, 
then A2(c) is at most A2(a) + Xz(b) + 2 rlog(A2(a))1 + 2 rlog(A~(b))l +6. Even 
if these 2-adic spans are maximal (and ensuring this is problematic), we will 
be able to determine the resulting sequence from far fewer bits than previously 
thought. For example, if we combine m-sequences of period 2" - 1 for n = 
7,11,13,15,16,17, then the resulting sequence has linear span nearly z7', but 
the Zadic span is less than 216. Thus 219 bits suffice to determine this sequence 
- and far fewer unless care i s  taken an the choice of the m-sequences. 

How can we build summation combiners that are secure against this sort 
of attack? It is necessary to choose underlying LFSRs whose output sequences 
have large Zadic span. Suppose, for example, we hope to have Zgo secure bits. 
We might build a summation combiner based on maximal period LFSRs with 
length about 60. The resulting sequence is certainly secure against the classical 
BerlekampMassey attack. However, it is only secure against the attack described 
in this paper if we choose the individual output sequences have 2-adic spans close 
to their periods. 

A slightly different analysis arises if we consider security based on complexity. 
If we consider a system secure if it takes 260 word operations to crack it, then 
it must have 2-adic span at least 227. If we allow 270 word operations, the 2- 
a d k  span must be 232. However, the analysis we have given is a worst case 
analysis. The actual speed of the rational approximation algorithm depends on 
the number of updates that must be performed. Thus the sequences chosen must 
not only have large 2-adic span, they must guarantee that many updates occur 
in the rational approximation algorithm. 
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Many other questions remain concerning FCSRs and 2-adic span. To under- 
stand the average behavior of the algorithm, we are led to the question of how 
the 2-adic span varies as a random sequence is lengthened. This is closely related 
to the question of what the 2-adic span of an average sequence is. Experimental 
evidence suggests that on average the 2-adic span is about half the length of 
the sequence. This would be consistent with what happens in the case of lin- 
ear span, and would imply that on average many updates occur in the rational 
approximation algorithm. 

The question of how to generate sequences with large 2-adic span is now an 
important one. We cannot have secure stream ciphers without such sequences. 
In fact we need to be able to generate sequence that simultaneously have large 
2-adic and large linear span, 

Finally, a number of generalizations of FCSRs have been suggested, based 
on other complete valued fields over number fields [8, lo]. Generalization of the 
ideas in this paper to padic shift registers (p a prime) is straightforward. Gener- 
alizations to registers over ramified and unramified extensions of the 2-adic (or 
padic) numbers are more difficult. With care, the registers can be constructed 
and have the appropriate algebraic structures. However, the rational approxi- 
mation algorithm only appears to generalize under very special conditions. For 
example, we must have an algebraic number field whose ring of integers is a 
Euclidean domain. Furthermore, it seems that the convergence rate can only be 
guaranteed if the norm function on this field has certain properties. 
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