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Abstract. Data mining tries to discover interesting and surprising pat-
terns among a given data set. An important task is to develop effective
measures of interestingness for evaluating and ranking the discovered
patterns. A good measure should give a high rank to patterns, which have
strong evidence among data, but which yet are not too obvious. Thereby
the initial set of patterns can be pruned before human inspection. In
this paper we study interestingness measures for generalized quantita-
tive association rules, where the attribute domains can be fuzzy. Several
interestingness measures have been developed for the discrete case, and
it turns out that many of them can be generalized to fuzzy association
rules, as well. More precisely, our goal is to compare the fuzzy version
of confidence to some other measures, which are based on statistics and
information theory. Our experiments show that although the rankings of
rules are relatively similar for most of the methods, also some anomalies
occur. Our suggestion is that the information-theoretic measures are a
good choice when estimating the interestingness of rules, both for fuzzy
and non-fuzzy domains.

1 Introduction

Data mining, also referred to as knowledge discovery in databases, is concerned
with the nontrivial extraction of implicit, previously unknown, and potentially
useful information from data [14]. One major application domain of data mining
is the analysis of transactional data. The problem of mining boolean association
rules over basket data was first introduced in [1], and later broadened in [2], for
the case of databases consisting of categorical attributes alone.

For example, in a database maintained by a supermarket, an association rule
might be of the form:

“beer and potato chips → diapers (support: 2%, confidence: 73%)”,

which means that 2% of all database transactions contain the data items beer,
potato chips and diapers, and 73% of the transactions that have the items “beer”
and “potato chips” also have the item “diapers” in them. The two percentage
values are referred to as support and confidence, respectively.
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In practice the information in many, if not most, databases is not limited to
categorical attributes (e.g. zip code, make of car), but also contains much quan-
titative data (e.g. age, income). The problem of mining quantitative association
rules was introduced and an algorithm proposed in [17]. The algorithm involves
discretizing the domains of quantitative attributes into intervals in order to re-
duce the domain into a categorical one. An example of such an association might
be “10% of married people between 50 and 70 have at least 2 cars”.

Without a priori knowledge, however, determining the right intervals can
be a tricky and difficult task due to the “catch-22” situation, as called in [17],
because of the effects of small support and small confidence. Moreover, these
intervals may not be concise and meaningful enough for human experts to easily
obtain nontrivial knowledge from those rules discovered.

Instead of using sharp intervals, fuzzy sets were suggested in [12] to represent
intervals with non-sharp boundaries. The obtained rules are called fuzzy associ-
ation rules. If meaningful linguistic terms are assigned to fuzzy sets, the fuzzy
association rule is more understandable. The above example could be rephrased
e.g. “10% of married old people have several cars”. Algorithms for mining fuzzy
association rules were proposed in ([9], [7]), but the problem is that an expert
must provide the required fuzzy sets of the quantitative attributes and their cor-
responding membership functions. It is unrealistic to assume that experts can
always provide the best fuzzy sets for fuzzy association rule mining. In [8], we
tackled this problem and proposed a method to find the fuzzy sets for quantita-
tive attributes by using clustering techniques.

It has been recognized that a discovery system can generate a large number
of patterns, most of which are of no interest to the user. To be able to prune
them, researchers have defined various measures of interestingness for patterns.
The most popular are confidence and support [1], others include e.g. variance
and chi-square (correlation) [13], entropy gain [13], laplace [5], and intensity of
implication [4]. Properties of various measures were analyzed in [3]. An extensive
survey of recently proposed interestingness measures is given in [10].

The term ‘interestingness’ is often used in a subjective sense, meaning the
same as ‘surprisingness’. Here we take the view that it should be also measurable
in more precise terms. Although many interestingness measures have been devel-
oped for “discrete” domains, they are not directly applicable to other problem
domains, such as fuzzy association rules. In this paper, we introduce generaliza-
tions of interestingness measures for fuzzy association rules, based on statistics
and information theory. Especially, we present two new measures using the en-
tropy concept. Our suggestion is that these information-theoretic measures are
a good choice when estimating the interestingness of rules, both for fuzzy and
non-fuzzy domains.

The rest of this paper is organized as follows. In the next section, we give
a short summary of fuzzy association rules. Then we propose six measures for
this fuzzy approach in Sect. 3. In Sect. 4 the experimental results are reported,
comparing the proposed fuzzy interestingness measures. The paper ends with a
brief conclusion in Sect. 5.
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2 Fuzzy Association Rules

Let I = {i1, i2, . . . , im} be the complete set of attributes where each ij
(1 ≤ j ≤ m) denotes a categorical or quantitative attribute. Note that categories
are a special case of quantitative attributes, and can be handled similarly. In [8],
we proposed a method to find the fuzzy sets for each quantitative attribute
by using clustering techniques. We defined the goodness index G for clustering
scheme evaluation, based on two criteria: compactness and separation. The clus-
tering process determines both the number (c) and centers (ri, i = 1, . . . , c) of
clusters. We divide the attribute interval into c sub-intervals around the clus-
ter centers, with a coverage of p percent between two adjacent ones, and give
each subinterval a symbolic name related to its position (Fig. 1). The non-fuzzy
partitioning is obtained as a special case by setting p to zero.
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Fig. 1. Example of the proposed fuzzy partitions

For fuzzy set i, d+i means the effective upper bound, and is given by:

d+i = ri +
1
100

·
(
100 − p

2

)
· (ri+1 − ri) ,

where p is the overlap parameter in %, and ri is the center of cluster i, i =
1, 2, . . . , c − 1.

Similarly, for fuzzy set j, d−
j means the effective lower bound, given by:

d−
j = rj − 1

100
·
(
100 − p

2

)
· (rj − rj−1) ,

where j = 2, 3, . . . , c.
Then, we generate the corresponding membership function for each fuzzy

set of a quantitative attribute; for formulas, see [8]. Finally, a new transformed
(fuzzy) database DT is generated from the original database by applying the
discovered fuzzy sets and the membership values.

Given a database DT =
{
t1, t2, . . . , tn

}
with attributes I and the fuzzy sets

F (ij) associated with attributes ij in I, we use the following form for a fuzzy
association rule [12]:
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If X = {x1, x2, . . . , xp} is A = {a1, a2, . . . , ap}
then Y = {y1, y2, . . . , yq} is B = {b1, b2, . . . , bq},

where ai ∈ F (xi), i = 1, . . . , p, bj ∈ F (yj), j = 1, . . . , q. X and Y are ordered
subsets of I and they are disjoint i.e. they share no common attributes. A and
B contain the fuzzy sets associated with the corresponding attributes in X and
Y . As in the binary association rule, “X is A” is called the antecedent of the
rule while “Y is B” is called the consequent of the rule. We also denote Z =
X ∪ Y = {z1, . . . , zp+q} and C = A ∪ B = {c1, . . . , cp+q}.

3 Interestingness Measures for Fuzzy Association Rules

One problem area in knowledge discovery is the development of interestingness
measures for ranking the usefulness and utility of discovered patterns and rules.
In this section, we first describe the fuzzy itemset measures, then we propose
six other candidate measures for fuzzy association rules. Three of these six are
based on traditional statistics, and their non-fuzzy counterparts have occured
many times in the literature. The three other measures, on the other hand,
have their basis in the information theory, originally developed by Shannon,
see e.g. [15]. Although our experiments in Sect. 4 do not show a big difference
between the two categories of methods, we conjecture that the information-
theoretic measures are in some cases better in capturing dependences among
data. Another classification of measures would be on the basis of linear/nominal
scale, but our formulations are such that this separation need not be explicit.

3.1 Fuzzy Itemset Measures

Let DT =
{
t1, t2, . . . , tn

}
be a database, where n denotes the total number of

records (‘transactions’). Let (Z,C) be an attribute-fuzzy set pair, where Z is an
ordered set of attributes zj and C is a corresponding set of fuzzy sets cj . (From
now on, we prefer to use the word “itemset” instead of “attribute-fuzzy set pair”
for (Z,C) elements). If a fuzzy association rule (X,A) → (Y,B) is interesting,
it should have enough fuzzy support FS(Z,C) and a high fuzzy confidence value
FC((X,A),(Y,B)), where Z = X ∪ Y , C = A ∪ B.

The fuzzy support value is calculated by multiplying the membership grade
of each (zj , cj), summing them, then dividing the sum by the number of records
[12]. We prefer the product operator as the fuzzy AND, instead of the normal
minimum, because it better distinguishes high- and low-support transactions.

FS(Z,C) =

∑n
i=1Π

m
j=1(t

i [(zj , cj)])
n

,

where m is the number of items in itemset (Z,C).
The fuzzy confidence value is calculated as follows:

FC((X,A),(Y,B)) =
FS(Z,C)

FS(X,A)
.
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Table 1. Part of database containing fuzzy membership

. . . (Balance, low) . . . (Income, low) . . . (Credit, low) (Credit, high) . . .
0.2 0.2 0.1 0.9
0.4 0.2 0.1 0.9

. . . 0.9 . . . 0.8 . . . 0.7 0.3 . . .
0.9 0.8 0.9 0.1
0.6 0.4 0.9 0.1

Both of the above formulas are direct generalizations of the corresponding
formulas for the non-fuzzy case [1].

We shall use the following two rules to demonstrate the calculation of inter-
estingness measures. The data behind the rules are presented in Table 1.

Let X = {Balance, Income}, A = {low, low}, Y = {Credit}, B = {low},
and B = {high}. Rule1 (X,A) → (Y,B) is given by:

“If Balance is low and Income is low then Credit is low”,

and Rule2 (X,A) → (Y,B) is phrased as:

“If Balance is low and Income is low then Credit is high”.

The consequents are thus complements of each other. From the table data, we
can easily see that Rule1 should be classified as ‘valid’, whereas Rule2 should
not. When introducing the different measures of interestingness, we will check,
how they are able to confirm this observation.

Example 1. Fuzzy confidence does a good job in assessing the rules:

FC((X,A),(Y,B)) =
0.004 + 0.008 + 0.504 + 0.648 + 0.216

0.04 + 0.08 + 0.72 + 0.72 + 0.24
= 0.766

FC((X,A),(Y,B)) =
0.036 + 0.072 + 0.216 + 0.072 + 0.024

0.04 + 0.08 + 0.72 + 0.72 + 0.24
= 0.233

For Rule1, FS(Y,B) = 0.54 and FS(Z,C) = 0.276. Similarly, FS(Y,B) = 0.46, and
FS(Z,C) = 0.084 for Rule2. In both cases, FS(X,A) = 0.36.

3.2 Fuzzy Covariance Measure

Covariance is one of the simplest measures of dependence, based on the co-
occurrence of the antecedent (X,A) and consequent (Y,B). If they co-occur
clearly more often than what can be expected in an independent case, then
the rule (X,A) → (Y,B) is potentially interesting. Piatetsky-Shapiro called this
measure a rule-interest function [14]. We extend it to the fuzzy case, and define
the covariance measure as:

Cov((X,A),(Y,B)) = FS(Z,C) − FS(X,A) · FS(Y,B).

Example 2. The covariance measures for our sample rules are:

Cov((X,A),(Y,B)) = 0.0816, and Cov((X,A),(Y,B)) = −0.0816.
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3.3 Fuzzy Correlation Measure

Covariance has generally the drawback that it does not take distributions into
consideration. Therefore, in statistics, it is more common to use so called cor-
relation measure, where this drawback has been eliminated. Again, we have to
generalize the non-fuzzy formula to the fuzzy case, and obtain:

Corr((X,A),(Y,B)) =
Cov((X,A),(Y,B))√
V ar(X,A) · V ar(Y,B)

,

where

V ar(X,A) = FS(X,A)2 − (
FS(X,A)

)2
,

FS(X,A)2 =

∑n
i=1

(
Πm

j=1t
i [(xj , aj)]

)2
n

,

similarly for (Y,B).

These definitions are extensions of the basic formulas of variance and covari-
ance. The value of the fuzzy correlation ranges from -1 to 1. Only a positive
value tells that the antecedent and consequent are related. The higher the value
is, the more related they are.

Example 3. Again, applying the formula to our two sample rules, we obtain:

Corr((X,A),(Y,B)) = 0.738, and Corr((X,A),(Y,B)) = −0.738.

3.4 Fuzzy I-Measure

As an example of a more ‘exotic’ probability-based interestingness measure, we
give the fuzzy version of a so-called I-measure suggested by Gray and Orlowska
[6]. Though it has some structural similarity with correlation, we regard it rather
as a heuristic measure. The fuzzy I-measure is defined as:

I((X,A),(Y,B)) =

[(
FS(Z,C)

FS(X,A) · FS(Y,B)

)k

− 1

]
· (
FS(X,A) · FS(Y,B)

)m
,

where k and m are weight parameters of the two terms. A practical problem in
applying this measure is the selection of these parameters.

Example 4. The I-measure values for our two sample rules (for k = m = 2) are:

I((X,A),(Y,B)) = 0.038, and I((X,A),(Y,B)) = −0.02.

In data mining, an association rule X → Y usually means that X implies Y
and we cannot assume Y also implies X. Covariance, Correlation and I-measure
are symmetric with respect to (X,A) and (Y,B). Thus, we can use them only
as non-directed measures of dependence.
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3.5 Fuzzy Unconditional Entropy (UE) Measure

Assume that we want to evaluate rule (X,A) → (Y,B), and denote Z = X ∪ Y
and C = A∪B. For (X,A), (Y,B), and (Z,C) we can calculate the probability of
occurrence, based on the transactions. These are in fact the same as the (fuzzy)
support FS(X,A), FS(Y,B), and FS(Z,C). If (X,A) and (Y,B) are independent,
then it holds that

FS(Z,C) = FS(X,A) · FS(Y,B).

However, if there is a dependence, then the equality does not hold. The degree of
correlation can be measured as follows. We determine the information amount
needed by assuming independence; we call this independence entropy, denoted
H((X,A);(Y,B)) and computed as follows:

H((X,A);(Y,B)) = − FS(Z,C) · log2
(
FS(X,A) · FS(Y,B)

) −
− (

1 − FS(Z,C)
) · log2

(
1 − FS(X,A) · FS(Y,B)

)
.

This represents the amount of information needed per transaction, when
using a (false) assumption of independence, applied when true probability is
FS(Z,C). The true entropy of (Z,C) is computed as follows:

H(Z,C) = −FS(Z,C) · log2
(
FS(Z,C)

) − (
1 − FS(Z,C)

) · log2
(
1 − FS(Z,C)

)
.

Since this formula uses precise probabilities, its value is always smaller than
or equal to the independence entropy. Moreover, their difference is larger when
the dependence is higher. Therefore, we get a good measure of correlation as the
difference, which we call unconditional entropy (UE):

UE((X,A),(Y,B)) = H((X,A);(Y,B)) − H(Z,C).

Notice that although the measure is always non-negative, the related correla-
tion can be either positive or negative, so that (X,A) and (Y,B) occur together
either more or less frequently than in an independent case. Therefore, the true
consequent of the (interesting) rule can be either (Y,B) or its complement. The
latter holds if FS(Z,C) < FS(X,A) · FS(Y,B), i.e. covariance is < 0.

Example 5. Let us compute the UE-values for our two sample rules:

UE((X,A),(Y,B)) = 0.878 − 0.850 = 0.028, and UE((X,A),(Y,B)) = 0.041.

Although the latter value is higher than the former, the condition FS(Z,C) =
0.084 < FS(X,A) · FS(Y,B) = 0.36 · 0.46 = 0.1656 holds, and we conclude that
Rule2 is not valid. Instead, for Rule1 FS(Z,C) = 0.276 > FS(X,A) · FS(Y,B) =
0.1944, so Rule1 is a ‘good’ one.
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3.6 Fuzzy Conditional Entropy (CE) Measure

UE -measure is analogous to the correlation of a rule in the sense that both for-
mulas are symmetric with respect to (X,A) and (Y,B). We now develop another
measure, which makes a distinction between the antecendent and consequent.
Hereby we obtain an information-theoretic counterpart of confidence. The rea-
soning resembles the derivation of UE, but from the consequent’s point of view.
The unconditional entropy of (Y,B) is computed as follows:

H(Y,B) = −FS(Y,B) · log2
(
FS(Y,B)

) − (
1 − FS(Y,B)

) · log2
(
1 − FS(Y,B)

)
.

If (X,A) affects in some way on (Y,B), then the conditional probability
P((Y,B)|(X,A)) is different from P(Y,B). Notice that the conditional probability is
the same as (fuzzy) confidence FC((X,A),(Y,B)), defined earlier. The conditional
entropy is computed as

H((Y,B)|(X,A)) = − FC((X,A),(Y,B)) · log2
(
FC((X,A),(Y,B))

) −
− (

1 − FC((X,A),(Y,B))
) · log2

(
1 − FC((X,A),(Y,B))

)
.

Since the conditional entropy uses a more precise value for the probability
of (Y,B) among the subset studied (transactions satisfying (X,A)), for ‘true’
rules, H(Y,B) should be larger than H((Y,B)|(X,A)). Their difference represents the
deviation from the independent case, and measures the dependence of (Y,B) on
(X,A). The interestingness measure is thus defined as

CE((X,A),(Y,B)) = H(Y,B) − H((Y,B)|(X,A)).

The larger the value, the higher the dependence. As for UE, also here the
actual consequent of a rule classified as interesting can be either (Y,B) or its
complement. The latter holds if FC((X,A),(Y,B)) < FS(Y,B).

It should be noted that CE is similar to the Theil index [18], in the sense
that both measure deviation from the expected entropy.

Example 6. The CE-measure gives the same value for both of our sample rules,
because the consequents are complements to each other:

CE((X,A),(Y,B)) = CE((X,A),(Y,B)) = 0.995 − 0.784 = 0.211.

This is just what should happen in information-theoretic sense. Our addi-
tional condition determines that Rule1 is positive and Rule2 is negative.

3.7 Fuzzy J-measure

Information theory has naturally been applied to measuring interestingness of
rules before. One such measure, so called J-measure, was suggested by Smyth
and Goodman [16]. It can be generalized to the fuzzy rules as follows:

J((X,A),(Y,B)) = FS(Y,B) ·
[
FS(Z,C)

FS(Y,B)
· log2

(
FS(Z,C)

FS(Y,B) · FS(X,A)

)
+
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+
(
1 − FS(Z,C)

FS(Y,B)

)
· log2


 1 − FS(Z,C)

FS(Y,B)

1 − FS(X,A)







The first term FS(Y,B) measures the generality of the rule. The term in-
side the square brackets measures the relative entropy of (Y,B) on (X,A), the
similarity of two probability (support) distributions. Though the J -measure is
different from our UE -measure, in experiments it gave rather similar rankings
to rules (see next section).

Example 7. The J -measures for our two test rules are:

J((X,A),(Y,B)) = 0.037, and J((X,A),(Y,B)) = 0.050.

4 Experimental Results

We assessed the effectiveness of our interestingness measures by experimenting
with a real-life dataset, which comes from a research by the U.S. Census Bureau.
The data had 6 quantitative attributes. This database has been used in previous
data mining research ([7], [8]) and will not be described again here.

Using support threshold = 20% and confidence threshold = 50%, we get
exactly 20 rules, which are evaluated in the tests. Table 2 and Table 3 describe
the calculated interestingness and the assigned ranks, respectively, as determined
by the corresponding interestingness measure.

To quantify the extent of the ranking similarities between the seven measures,
we computed the correlation coefficient for each pair of interestingness measures,
see Table 4. The coefficients vary from a low 0.243 for the pair Conf and I-
measure, to a high of 0.988 for the pair UE - and J-measure.

We found two distinct groups of measures, which are ranked similarly. One
group consists of the non-directed measures Cov, Corr, I-measure, UE-measure,
and J-measure. The other group consists of the directed measures CE, and Conf.
However, there are no negative correlations between the two groups. Two repre-
sentatives from both groups are shown in Fig. 2a and Fig. 2b.

At this point the reader may wonder, what advantage do information-theore-
tic measures give over statistical ones, if any. The difference comes e.g. in cases
where support values are rather high. High support implies also a rather high
confidence, even in a case where the antecedent and consequent are independent.

However, CE gives a value ≈ 0 in this case, pruning the rule. That will happen
also with the ‘symmetric’ measures Cov, Corr, I-measure, and UE-measure, but
their drawback is lack of direction. Thus, our conjecture is that CE is a good
means of measuring the interestingness of rules.

5 Conclusion and Future Work

In this paper we have studied interestingness measures for generalized quantita-
tive association rules, where the attribute domains can be fuzzy. We compared
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Fig. 2. Rankings of interestingness measures - (a) group1, (b) group2

the fuzzy version of confidence to six other measures, three of which were statisti-
cal, and the rest three were information-theoretic, based on the entropy concept.

The experiments show that rankings of rules are relatively similar for most
of the methods, but also several inversions appeared in the ranking order. Scores
of interestingness measures were used to compute the correlation coefficients,
revealing two categories of measures, the directed and non-directed ones. We
suggest that the information-theoretic measures are a good choice when esti-
mating the interestingness of rules, both for fuzzy and non-fuzzy domains.

Here we compared the measures of interestingness only by means of numerical
rankings, obtained from experiments. In the future, we plan to compare them



162 A. Gyenesei and J. Teuhola

Table 2. Interestingness measures - scores

Rule Conf Cov Corr I-measure UE-measure CE-measure J-measure
1 0.8384 0.0874 0.4522 0.0297 0.0427 0.3619 0.0524
2 0.7841 0.0812 0.4018 0.0292 0.0347 0.2473 0.0435
3 0.8418 0.0933 0.4728 0.0335 0.0464 0.3700 0.0580
4 0.8504 0.1601 0.7232 0.0970 0.0938 0.3911 0.1558
5 0.7067 0.0442 0.2102 0.0205 0.0081 0.1066 0.0102
6 0.6416 0.0528 0.2450 0.0216 0.0128 0.0586 0.0171
7 0.7655 0.0921 0.4273 0.0395 0.0387 0.2141 0.0519
8 0.8022 0.1514 0.6704 0.0967 0.0805 0.2824 0.1425
9 0.6804 0.0398 0.1809 0.0208 0.0060 0.0756 0.0080

10 0.5768 0.0338 0.1498 0.0150 0.0049 0.0170 0.0068
11 0.8521 0.1680 0.7560 0.1064 0.1005 0.3954 0.1751
12 0.6468 0.0576 0.2635 0.0249 0.0146 0.0630 0.0199
13 0.7093 0.0475 0.2231 0.0233 0.0090 0.1100 0.0116
14 0.5918 0.0682 0.3433 0.0522 0.0144 0.0244 0.0367
15 0.5117 -0.0064 -0.0316 -0.0046 0.0001 -0.0008 0.0003
16 0.6399 0.0394 0.2035 0.0340 0.0046 0.0369 0.0097
17 0.8148 0.0569 0.2923 0.0196 0.0172 0.2884 0.0200
18 0.9999 0.0474 0.3105 0.0198 0.0101 0.7274 0.0108
19 0.9679 0.0372 0.2675 0.0142 0.0066 0.5240 0.0070
20 0.9157 0.0340 0.2132 0.0166 0.0046 0.3118 0.0050

also by qualitative means. We also intend to use more diverse and extensive test
data to confirm the claims made in this paper.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of
items in large databases. Proc. of ACM SIGMOD (1993) 207–216

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. Proc. of the 20th VLDB Conference (1994) 487–499

3. Bayardo, R. J., Agrawal, R.: Mining the Most Interesting Rules. In Proc. of the
5th ACM SIGKDD (1999) 145–154

4. Bernadet M.: Basis of a Fuzzy Knowledge Discovery System. In Proc. of the 4th
European Conference on PKDD (2000) 24–33

5. Clark, P., Boswell, P.: Rule Induction with CN2: Some Recent Improvements. In
Machine Learning: Proc. of the Fifth European Conference (1991) 151–163

6. Gray, B., Orlowska, M.E.: Ccaiia: clustering categorical attributes into interesting
association rules. In Proc. of the 2th Pacific-Asia Conf. on Knowledge Discovery
and Data Mining (1998) 132–143

7. Gyenesei, A.: Mining Weighted Association Rules for Fuzzy Quantitative Items. In
Proc. of the 4th European Conference on PKDD (2000) 416–423

8. Gyenesei, A.: Determining Fuzzy Sets for Quantitative Attributes in Data Mining
Problems. Proc. of Advances in Fuzzy Systems and Evol. Comp. (2001) 48–53

9. Hong, T-P., Kuo, C-S, Chi, S-C.: Mining association rules from quantitative data.
Intelligent Data Analysis 3 (5) (1999) 363–376



Interestingness Measures for Fuzzy Association Rules 163

Table 3. Interestingness measures - ranks

Rule Conf Cov Corr I-measure UE-measure CE-measure J-measure
1 7 6 5 8 5 6 5
2 10 7 7 9 7 10 7
3 6 4 4 7 4 5 4
4 5 2 2 2 2 4 2
5 13 14 16 14 14 13 14
6 16 11 13 12 11 16 11
7 11 5 6 5 6 11 6
8 9 3 3 3 3 9 3
9 14 15 18 13 16 14 16

10 19 19 19 18 17 19 18
11 4 1 1 1 1 3 1
12 15 9 12 10 9 15 10
13 12 12 14 11 13 12 12
14 18 8 8 4 10 18 8
15 20 20 20 20 20 20 20
16 17 16 17 6 18 17 15
17 8 10 10 16 8 8 9
18 1 13 9 15 12 1 13
19 2 17 11 19 15 2 17
20 3 18 15 17 19 7 19

Table 4. Correlation coefficients for interestingness measures

Conf Cov Corr I-measure UE-measure CE-measure J-measure
Conf - 0.378 0.500 0.243 0.359 0.949 0.300
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