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Abstract. Feature extraction and knowledge discovery from a large
amount of image data such as remote sensing images have become highly
required recent years. In this study, a framework for data mining from a
set of time-series images including moving objects was presented. Time-
series images are transformed into time-series cluster addresses by using
clustering by two-stage SOM (Self-organizing map) and time-dependent
association rules were extracted from it. Semantically indexed data and
extracted rules are stored in the object-relational database, which al-
lows high-level queries by entering SQL through the user interface. This
method was applied to weather satellite cloud images taken by GMS-5
and its usefulness was evaluated.

1 Introduction

A huge amount of data has been stored in databases in the areas of business or
science. Data mining or knowledge discovery from database (KDD) is a method
for extracting unknown information such as rules and patterns from a large-scale
database. The well-known data mining methods include decision tree, association
rules [I] [2], classification, clustering, and time-series analysis [3], and there are
some successful application studies for astronomical images such as SKICAT [5]
and JARtool [].

In our recent studies [7] []], we have applied data mining methods such as
clustering and association rules to a large number of time-series satellite weather
images over the Japanese islands. Meteorological events are considered to be
chaotic phenomena in that an object such as a mass of cloud changes its position
and form continuously, and thus appropriate for experiments of spatial temporal
data mining.

Features of our studies applied to the weather images are summarized as
follows: application of data mining method to image classification and retrieval,
feature description from time-series data, implementation of the result of classi-
fication as the user retrieval interface, and construction of the whole system as
a domain-expert KDD supporting system.

We describe an overview of the system in Sect. 2. A clustering algorithm
for time-sequential images and its experimental results are described in Sect. 3.
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Section 4 describes the algorithm of extraction of time-dependent association
rules and its experimental results. Section 5 describes details of the construction
of the database by using R-tree and the results of its implementation. Section 6
provides a conclusion.

2 System Overview

We constructed a weather image database that gathers the sequential changes of
cloud images and aimed to construct the domain-expert analysis support system
for these images. The flow of this system is shown in Fig. [l and described as
follows:

1 Clustering of frame images using a self-organizing map.

2 Transformation of time-series images into cluster address sequence.

3 Extraction of events and time-dependent rules from the time-sequential
cluster addresses.

4 Indexing of events and rules by R-tree, and integration with the
database.

5 Searching for time-sequential variation patterns and browsing of the
retrieved data in the form of animation.

The above-described framework enables us to characterize enormous amount
of images acquired at a regular time interval semi-automatically, and to retrieve
the images by using the extracted rules. For example, this framework enables
queries like “search for frequent events that occur between one typhoon and
the next typhoon”, or “search for a weather change such that a typhoon occurs
within 10 days after a front and high pressure mass developed within the time
interval of 5 days”.

3 Time-Sequential Data Description by Using Clustering

3.1 Data Set Description

Satellite weather images, taken by GMS-5 and received at the Institute of Indus-
trial Science of Tokyo University, are archived at the Kochi University weather
page (http://weather.is.kochi-u.ac.jp). In this study, we used infrared band (IR1)
images around Japanese islands, which reflect the cloud distribution very well.
The size of image is 640-pixels in width and 480-pixels in height. Each image is
taken every hour, and about 9000 images are archived every year.

We considered that conventional image processing methods might be unable
to detect moving objects such as the cloud masses that change their position as
time proceeds. Thus we used the following SOM-based method for the automatic
clustering of images by taking the raster image intensity vectors as the inputs.
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Fig. 1. Overview of the system.

3.2 Clustering and Kohonen’s Self-Organizing Map

Kohonen’s self-organizing map (SOM) [9] is a paradigm which was suggested
in 1990, which has been widely used to provide a rough structure to a given
non-structured information. The SOM is a two-layer network composed of a
combination of the input layer and the competition layer that is trained through
iterative non-supervised learning.

Each unit of the input layer and the competition layer has a vector whose
components correspond to the input pattern elements. The algorithm of the
SOM is described as follows: Let the input pattern vector V€ R™ as V =
[v1, V2,03, - -, v,], and the weight of union from the input vector to a unit 7 as
Ui = [, U2, U3, -+, Usp ). Initial values of u;; are given randomly. V' is compared
with all U;, and the best matching unit which has the smallest Euclidean distance
is determined and signified by the subscript c.

¢ = argmin|V — U,|. (1)

Weight vectors of the unit ¢ and its neighbors N, which is the area of N x NV
units around the unit ¢, are adjusted to increase the similarity as follows,

uft + a(t) (v — uiy) (i
u?jew — { 17 + ,S%lgi J ZJ) EZ ; xzi (2)
where
a(t) =ao(1-t/T), (3)
N(t) = Ny (1—t/T). (4)

The a(t) N(t) are the learning rate and the size of neighbors at the time of
t iterations, respectively, ag and Ny is the initial learning rate and the size of
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Fig. 2. Problem for clustering of weather images.

neighbors, and T is the total number of iterations of learning. The learning rate
and the size of neighbor decreases as the learning proceeds to stabilize it.

The input signals V are classified into the activated (closest) unit U, and
projected onto the competition grids. The distance on the competition grids
reflects the similarity between the patterns. After the training is completed, the
obtained competition grids represent a natural relationship between the patterns
of input signals entered into the network. Hereafter we call the competition grids
obtained after the learning as the feature map.

3.3 Clustering by Two-Stage SOM

Figure [2 represents the problem of clustering of weather images. Two images in
Fig. BA) are considered to have the same features of a typhoon and a front,
although their forms and positions change as time proceeds. When we take the
input vectors simply as the raster image intensity vectors, these images are
classified into the different groups based on the spatial variations of intensity.
We considered that this difficulty is avoided by dividing the images into blocks
as shown in Fig. 2(B).

The procedure adopted here, named two-stage SOM, is shown in Fig. Bl
schematically and described as follows:

stage 1 Clustering of pattern cells
step 1 All Images are divided into N x M blocks.
step 2 Learning by SOM is performed by entering the each block’s raster
image intensity vector as the input vector successively.
step 3 Each block of the original images are projected onto the first SOM
feature map and characterized with the closest unit address. We refer
to this characterized blocks as the pattern cells.
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Fig. 3. Clustering of weather images by SOM.

stage 2 Clustering of the images by using frequency histograms of

pattern cells.

step 1 Each image is transformed into the frequency histogram of the pat-
tern cells.

step 2 The feature map of SOM is learned by entering each image’s pattern
cell frequency histogram as the input vector.

step 3 Each images are projected onto the second SOM feature map and
characterized with the closest unit address.

Although the information of spatial distribution of pattern is lost by transform-
ing images into frequency histograms of pattern cells (in step 1 of stage 2), this
enables flexible classification of time-series images which have similar objects at
different positions as shown in Fig. 2b as the same type of images.

Hereafter we refer the unit as the cluster, and express the cluster addresses
by the characters of A, B, C, - - -, P in the raster-scan order from the upper left
corner to the lower right corner of 4x4 feature map.

3.4 Result of Experiments on Clustering

In the experiments, we sampled GMS-5 IR1 images with 8 hour time intervals
obtained between 1997 and 1998, and composed two data set for 1997 and 1998
which include 1044 and 966 images, respectively. We defined number of blocks
for each image to be 12 x 16, considering the typical size of cloud masses. The
sizes of feature maps of both the first stage SOM and the second stage SOM are
defined to be 4 x 4, which are determined by trial and error. Learning processes
are iterated 8000-10000 times.

The result of the experiment shows that images including similar features are
distributed into similar clusters. We describe clusters semantically by specifying
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Table 1. Semantical description of each cluster

cluster address season prominent characteristics
1997 1998
A AF,0 spring, summer front, typhoon
J H spring, summer rainy season’s front, typhoon
N spring, summer high pressure, typhoon
B,C spring autumn high pressure in the west
and low pressure in the east
DH E spring, autumn band-like high-pressure
F B spring, autumn front
P B spring, autumn migratory anticyclone
I J summer Pacific high pressure, front
M summer Pacific high pressure, typhoon
C summer Pacific high-pressure
E D autumn migratory anticyclone
G P autumn, winter linear clouds
K,L LM winter winter type, whirl-like
or linear cloud
0] LK,N winter cold front

Table 2. Accuracies of clustering

Recall Precision

84.6%(876,/1044)
86.7%(838,/966)

year

1997 86.0%(876/1022)
1998 86.7%(838/945)

the season in which the clusters are observed, based on the frequency of each
cluster every month, and by describing the representative object such as front
or typhoon by means of visual observation of images in the cluster in a domain-
expert like view. Table [l shows the semantical descriptions of clusters for 1997
and 1998. The description of each clusters for 1998 is different from that for
1997 since we performed the SOM learning for these data sets independently.
However, most of the groups are observed in both maps, thus the obtained result
is meaningful even in the view of the domain-expert knowledge.

To evaluate the accuracy of clustering quantitatively, we defined the following
parameters,

Recall = A/(A + B), Precision = A/(A+ C), (5)
where A is the number of the relevant images classified into the cluster, B is
the number of the relevant images classified into the other cluster, and C' is the
number of the nonrelevant images classified into the cluster. Relevance of images
are evaluated by classifying the images visually.

Table 2 shows the values of recall for 1997 and 1998 to be 86.0% and 86.7%,
respectively, and that the values of precision are 84.6% and 86.7%, respectively.
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Fig. 4. Example of description of cluster sequence, event sequence, and extraction of
time-dependent association rules.

These values indicate that two-stage SOM can successfully learn the features of
weather images and can classify them with a high accuracy.

4 Time-Sequential Analysis and Extraction of
Time-Dependent Association Rules

4.1 Time-Dependent Association Rule

In this study we extract time-dependent association rules such as “weather pat-
tern B occurs after weather pattern A”, which modify the episode rules [11] [12]
using the concept of cohesion to evaluate its significance.

First we express the sequence of a weather pattern by (4,1), (4,2),(C,3),---
where each component is a pair of cluster address of image (obtained by SOM)
and its observation time. Then we define the event e; in the sequence as contin-
uously occurring clusters, which is expressed by

e; =< Ci,S,‘f,TSi,TEi> (izl,---,n), (6)

where Cj is the cluster address, S;¢ is the continuity, T'S; is the starting time,
and TFE; is the ending time. The sequence S is then represented by

S:< €1,€9, ", En >, (7)

where n is the total number of the events in the sequence. Figure [ shows a
representation of event sequence in the case of S;r > 2.

We extract the event pairs that occur closely in the sequence by introducing a
local time window. Assuming the local time window with the length of neighbor,
the simple local variation pattern F is represented by

E = ([e;, e5],neighbory (i € {1,---,n—1},j € {2,---,n}), (8)

where [e;, e;] is a combination of the two events e; and e; which satisfies i < j
and T'S; — T'E; < neighbor.

Although neighbor is an idea similar with a time window in episode rules
[I1] [T2], we use this concept to extract only serial episodes such as A = B,
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excluding parallel episode rules and combination of serial/parallel episode rules
which are included in [11] [12].

Furthermore we use the method of co-occurring term-pair for document anal-
ysis [10] to evaluate strength of correlation of event pairs which occurs in the
local time window and to extract the prominent pairs as rules. The cohesion of
the event e; and e; in a local time window is defined by

Ey(eise))

VIf(ei) x f(ej)]7

where f(e;) and f(e;) are the frequencies of e; and e;, respectively, and E(e;, e;)
is the frequency of the co-occurrence of both e; and e; in a local time window.
The time-dependent association rules are extracted when the event pair has
larger cohesion than the threshold.

The procedure of extraction of time-dependent association rules in each local
time window with the length of neighbor is described in the following:

cohesion(e;, e;) =

(9)

step 1 The frequency of each event f(e) in a local time window is deter-
mined.

step 2 A combinational set of event pairs in a local time window are listed
as rule candidates.

step 3 Candidate pairs are sorted lexicographically in regard to the first
event and then the following event.

step 4 The same event pairs are bound, co-occurrence frequency of each
candidate pair Ey(e;, e;) is counted, and cohesion are calculated.

step 5 The event pairs that have larger cohesions than the threshold are
extracted as rules.

It should be noted that extraction is performed for each local time window by
sliding its position.

Strongly correlated event pairs have large cohesions even if each event occurs
less frequently. Inversely, weakly correlated event pairs have small cohesions even
if each event occurs very frequently.

4.2 Result of Experiments Regarding Time-Dependent Association
Rules

We applied the above-described time-dependent association rule extraction to
the sequence of cluster address obtained in 3.4. Here we take the threshold of
cohesion of 0.4 and neighbor ranging from 10 to 50. Since we sampled images
every 8 hours, the virtual length of neighbor is between 3.3 days and 16.7 days.

Table B shows the relationship between the size of neighbor and the number
of extracted rules. Although the assessment of the contents of the extracted rules
and development of its user-interface are ongoing issues, the result suggests the
similar numbers of rules are extracted from the different year’s data set, which
indicates that our present method is useful and robust.
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Table 3. Relationship between neighbor and number of rules.

netghbor 10 20 30 40 50

number of rules(1997) 17 63 116 165 207
number of rules(1998) 7 50 98 166 218

5 Integration of Extracted Rules and the Relational
Database

We integrate image sequences and the extracted rules with the relational data-
base and construct the system which supports analysis and discovery by domain-
experts. Here we index the time sequences by using R-tree [6] to enable fast query
operation.

5.1 Indexing by R-Tree

As shown in Fig. Bl there is a natural hierarchical enclosure relations between
time sequences such as year, season, month, rule, and event. By using the method
of R-tree [6], we can express these time sequences by the minimum bounding
rectangles (defined by the staring time and the ending time of sequence) and
store them into the hierarchical tree which reflects the enclosure relation. This
enables fast query operation of weather patterns by using month or seasons as
the search key.

5.2 Definition of Attributes

We stored extracted patterns in the following three tables: “series(l_term, r_term,
cohesion, location, first, last, “date_id (id, date), and “_series (term, first, last
that represent contents of time-dependent rules, the relationship between image
ID and the observation time, and the contents of time-dependent rule compo-
nents (events), respectively.

5.3 Query by SQL

Storing extracted patterns in the database enables the secondary retrieval of
the various complex patterns by using SQL statements. We show an example of
complex queries and the corresponding SQL statement in the following:

1 “]_term” and “r_term” are the cluster addresses of the first event and the second event
of extracted rules, respectively, “location” is the reference to the R-tree rectangles,
and “first” and “last” are the image IDs of the “l_term” starting point and the
“r_term” ending point, respectively.

2 “term” is the cluster number of the event, ”first” and “last” are the image IDs of
the starting point and the ending point of “term”, respectively.
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Fig. 5. Indexing by using R-tree, remarking at the continuing sequence. Arrows at the
bottom represent minimum bounding boxes of rules.

“Search for a weather change in 1997 such that a typhoon occurred within
10 days after a front and a successive high pressure mass developed within
the time interval of 5 days.”

select t1.first, t2.last, t3.date, t4.date]

from series tl1 , e_series t2 , date_id t3 , date_id t4

where ( tl1.1 term = "A" or tl.l term = "F" or tl.l term = "I" or

tl.1 term = "J" or tl.l term = "0") and ( tl.r_term = "B" or

tl.r_term = "C" or tl.r_term = "D" or tl.r_term = "H" or tl.r_term =
"I" or tl.r_term = "M" or tl.r_term = "N" ) and ( t2.term = "A" or
t2.term = "J" or t2.term = "M" or t2.term = "N") and (t1.last-t1.first
<15) and (t2.last- tl.first <30) and (tl.last <= t2.last) and t3.id
= tl.first and t4.id = t2.last

5.4 Result of Implementation and Issues in the Future Work

Figure [ shows an example of the user interface of integrated KDD support sys-
tem for weather information. Here we can retrieve the weather pattern by using
the season, the first event and the second event as the search keys. Matched
sequences are listed in the lower left frame, and by selecting one in the list, the
corresponding weather variation is shown as an animation in the lower right
frame. To deal with much more complex queries, we also prepare the user inter-
face which accepts SQL query directly.

In this system, however, users are unable to operate the process of primary
knowledge extraction by changing parameters such as the size of SOM, cohesion
threshold, and the size of the local time window. There are two approaches to

3 Note that time interval 1 in this SQL statement corresponds to 8 hours, and capital
alphabets indicate the cluster addresses described in table [I]
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Fig. 6. Example of the result of retrieval from sequential image data.

solve this problem: one is incorporation of the optimization process of these
parameterﬁ and another is improvement of interactiveness of the user interface.
Examination on both approaches will be one of most significant issues in the
future work. Also we consider designing of the user interface to stimulate expert’s
natural discovery is also important. Furthermore, improvement of time sequential
pattern analysis besides simple rule extraction will be significant to deal with
temporal patterns more meaningful for domain-experts including prediction.

6 Conclusion

We applied clustering and time-dependent association rules to a large-scale
content-based image database of weather satellite images. Each image is au-
tomatically classified by two-stage SOM. We also extracted unknown rules from
time-sequential data expressed by a sequence of cluster addresses by using time-
dependent association rules. Furthermore, we developed a knowledge discovery
support system for domain experts, which retrieves image sequences using ex-
tracted events and association rules. From the perspective that high-level queries
make the analysis easier, we stored the extracted rules in the database to ad-
mit sophisticated queries described by SQL. The retrieval responses to various
queries shows the usefulness of this approach.

The framework presented in this study, clustering = transformation into
time-sequential data = extraction of time-dependent association rules, is consid-
ered to be also useful in managing enormous multimedia data sets which include

4 For examples, the algorithm of growing hierarchical SOM [13], which is capable of
growing both in terms of map size as well as the three-dimensional tree structure, will
be effective for the adaptation of map size. We would like to examine this algorithm
in the future work.
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sequential patterns such as video and audio information or result of numerical
simulation.
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