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Abstract. The paper presents a new general measure of rule interest-
ingness. Many known measures such as chi-square, gini gain or entropy
gain can be obtained from this measure by setting some numerical pa-
rameters, including the amount of trust we have in the estimation of the
probability distribution of the data. Moreover, we show that there is a
continuum of measures having chi-square, Gini gain and entropy gain
as boundary cases. Therefore our measure generalizes both conditional
and unconditional classical measures of interestingness. Properties and
experimental evaluation of the new measure are also presented.
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1 Introduction

Determining the interestingness of rules is an important data mining problem
since many data mining algorithms produce enormous amounts of rules, mak-
ing it difficult for the user to analyze them manually. Thus, it is important to
establish some numerical interestingness measure for rules, which can help users
to sort the discovered rules. A survey of such measures can be found in [1]. Here
we concentrate on measures that assess how much knowledge we gain about the
joint distribution of a set of attributes Q by knowing the joint distribution of
some set of attributes P . Examples of such measures are entropy gain, mutual
information, Gini gain, χ2 [9,10,4,1,12,11]. The rules considered here are differ-
ent from classical association rules studied in data mining, since we consider full
joint distributions of both antecedent and consequent, while association rules
consider only the probability of all attributes having some specified value. This
approach has the advantage of applicability to mulitvalued attributes.

We show that all the above mentioned measures are special cases of a more
general parametric measure of interestingness, and by varying two parameters,
a family of measures can be obtained containing several well-known classical
measures as special cases.

There is work done in machine learning and information theory literature [5,
6,15,3] on generalizing information-theoretical measures. However, all previous
work is concerned with either unconditional or conditional measures, while this
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paper presents a generalization which includes family of intermediate measures,
between conditional and unconditional ones, and shows a relation between these
measures and the amount of trust we have in the estimate of probabilities from
data. For example, we present a continuum of measures between χ2 (uncon-
ditional measure), and the Gini gain (conditional measure). We show that the
intermediate measures have many interesting properties which make them useful
for rule evaluation.

Next, we give some essential definitions.

Definition 1. A probability distribution is a matrix of the form

∆ =
(
x1 · · · xm
p1 · · · pm

)
,

where pi ≥ 0 for 1 ≤ i ≤ m and
∑m

i=1 pi = 1.
∆ is an uniform distribution if p1 = · · · = pm = 1

m . An m-valued uniform
distribution will be denoted by Um.

Let τ = (T,H, ρ) be a database table, where T is the name of the table, H is
its heading, and ρ is its content. If A ∈ H is an attribute of τ , the domain of A
in τ is denoted by dom(A). The projection of a tuple t ∈ ρ on a set of attributes
L ⊆ H is denoted by t[L]. For more on relational notation and terminology
see [14].

Definition 2. The distribution of a set of attributes L = {A1, . . . , An} is the
matrix

∆L,τ =
(
�1 · · · �r
p1 · · · pr

)
, (1)

where r =
∏n
j=1 |dom(Aj)|, �i ∈ dom(A1)×· · ·×dom(An), and pi = |t∈ρ|t[L]=�i|

|ρ|
for 1 ≤ i ≤ r.

The subscript τ will be omitted when the table τ is clear from context.
The Havrda-Charvát α-entropy of the attribute set L (see [7]) is defined as:

Hα(L) =
1

1− α


 r∑
j=1

pαj − 1


 .

The limit case, when α tends towards 1 yields the Shannon entropy H(L) =
−∑r

j=1 pj log pj . Another important case, the Gini index, is obtained when α =
2 (see [1]) and is given by gini(L) = 1− ∑r

j=1 p
2
j .

If L,K are two sets of attributes of a table τ that have the distributions

∆L =
(
l1 · · · lm
p1 · · · pm

)
, and ∆K =

(
k1 · · · kn
q1 · · · qn

)
,
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then the conditional Shannon entropy of L conditioned upon K is given by

H(L|K) = −
m∑
i=1

n∑
j=1

pij log
pij
qj
,

where pij =
|{t∈ρ|t[L]=�i and t[K]=kj}|

|ρ| for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Similarly,
the Gini conditional index of these distributions is:

gini(L|K) = 1−
m∑
i=1

n∑
j=1

p2ij
qj
.

These definitions allow us to introduce the Shannon gain (called entropy gain in
literature [9]) and the Gini gain defined as:

gaingini(L,K) = gini(L)− gini(L|K),
gainshannon(L,K) = H(L)− H(L|K)

= H(L) +H(K)− H(LK), (2)

respectively, where LK is an abbreviation for L ∪ K. Note that the Shannon
gain is identical to the mutual information between attribute sets P and Q [9].
For the Gini gain we can write:

gaingini(L,K) =
m∑
i=1

n∑
j=1

p2ij
qj

−
m∑
i=1

p2i (3)

The product of the distributions ∆P , ∆Q, where

∆P =
(
x1 · · · xm
p1 · · · pm

)
, and ∆Q =

(
y1 · · · yn
q1 · · · qn

)
,

is the distribution

∆P ×∆Q =
(
(x1, y1) · · · (xm, yn)
p1q1 · · · pmqn

)
.

The attribute sets P,Q are independent if ∆PQ = ∆P ×∆Q.

Definition 3. A rule is a pair of attribute sets (P,Q). If P,Q ⊆ H, where
τ = (T,H, ρ) is a table, then we refer to (P,Q) as a rule of τ .

If (P,Q) is a rule, then we refer to P as the antecedent and to Q as the
consequent of the rule. A rule (P,Q) will be denoted, following the prevalent
convention in the literature, by P → Q.

This broader definition of rules originates in [4], where rules were replaced by
dependencies in order to capture statistical dependence in both the presence and
absence of items in itemsets. The significance of this dependence was measured
by the χ2 test, and our approach is a further extension of that point of view.

The notion of distribution divergence is central to the rest of the paper.
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Definition 4. Let D be the class of distributions. A distribution divergence is
a function D : D × D −→ R such that:

1. D(∆,∆′) ≥ 0 and D(∆,∆′) = 0 if and only if ∆ = ∆′ for every ∆,∆′ ∈ D.
2. When ∆′ is fixed, D(∆,∆′) is a convex function of ∆; in other words, if

∆ = a1∆1 + · · ·+ ak∆k, where a1 + . . .+ ak = 1, then

D(∆,∆′) ≥
k∑
i=1

aiD(∆i, ∆
′).

An important class of distribution divergences was obtained by Cziszar in [5]
as: Dφ(∆,∆′) =

∑n
i=1 qiφ

(
pi

qi

)
, where

∆ =
(
k1 · · · kn
p1 · · · pn

)
, and ∆′ =

(
l1 · · · ln
q1 · · · qn

)
,

are two distributions and φ : R −→ R is a twice differentiable convex function
such that φ(1) = 0. We will also make an additional assumption that 0 ·φ( 00 ) = 0
to handle the case when for some i both pi and qi are zero. If for some i, pi > 0,
and qi = 0 the value of Dφ(∆,∆′) is undefined.

The Cziszar divergence satisfies properties (1) and (2) given above (see [7]).
The following result shows the invariance of Cziszar divergence with respect

to distribution product:

Theorem 1. For any distributions Γ,∆,∆′ and any Cziszar divergence measure
Dφ we have Dφ(Γ ×∆,Γ ×∆′) = Dφ(∆,∆′).

Depending on the choice of the function φ we obtain the divergences shown
in the table below:

φ(x) D(∆,∆′) Divergence

x log x pi log pi

qi
Kullback-Leibler

x2 − x
∑n

i=1
p2i
qi

− 1 Dχ2

Both the Kullback-Leibler divergence (also known as crossentropy), which we
will denote by DKL and the χ2-divergence denoted by Dχ2 are special cases of
the Havrda-Charvát divergence DHα generated by φ(x) =

xα−x
α−1 [7]; specifically,

Dχ2 is obtained by taking α = 2, while DKL is obtained as a limit case, when α
tends towards 1.

It is easy to verify that

Dχ2(∆,∆′) =
n∑
i=1

(pi − qi)2

qi
.

Note that |ρ|Dχ2 equals the χ2 dependency measure, well known from statistics
[1].
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2 Interestingness of Rules

The main goal of this paper is to present a unified approach to the notion of
interestingness of rules. Let r = P → Q be a rule in a table τ = (T,H, ρ). To
construct an interestingness measure we will use a Bayesian approach, in that
we will consider an a posteriori distribution Θ of the consequent set of attributes
Q.

The definition of an interestingness measure of r will be guided by two main
considerations:

– The more the observed joint distribution of PQ diverges from the product
distribution of P and the a posteriori distributionΘ ofQ the more interesting
the rule is. Note that ∆PQ = ∆P ×Θ corresponds to the situation when P
and Q are independent and the observed distribution of Q is identical to the
a posteriori distribution.

– The rule is not interesting if P,Q are independent. Therefore, we need to
consider a correcting term in the definition of an interestingness measure that
will decrease its value when ∆Q is different from the a posteriori distribution.

The choice of the distribution Θ of the consequent Q of rules of the form
P → Q can be made starting either from the content of the table, that is,
adopting ∆Q for Θ, or from some exterior information. For example, if Q is the
sex attribute for a table that contains data concerning some experiment subjects,
we can adopt as the a posteriori distribution either

∆sex =
(
’F’ ’M’
0.45 0.55

)
,

assuming that 45% of the individuals involved are female, or the distribution

∆gen pop =
(
’F’ ’M’
0.51 0.49

)
,

consistent with the general distribution of the sexes in the general population.
Moreover, we can use the Laplace estimator [10,16] (also known in literature

as the m-estimate of probability) to obtain the a posteriori distribution

Θm =
|ρ|∆Q +mΘ0

|ρ|+m
,

where ∆Q is the distribution of Q that is extracted from a table τ , Θ0 is the
apriori distribution, |ρ| is the size of the database, and the integer m represents
the amount of trust we have in the prior distribution Θ0. If m = 0, this means
we completely ignore the a priori distribution, and m → ∞ means that we have
no trust in the data, and totaly rely on the prior distribution. To avoid using
limits, we denote a = |ρ|

|ρ|+m , and write the Laplacian as a convex combination
of the two distributions:

Θa = a∆Q + (1− a)Θ0.

Now a = 1, and a = 0 correspond to cases m = 0, and m → ∞ respectively.
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Definition 5. Let r : P → Q be a rule, D be some measure of divergence
between distributions, and let Θ be a distribution.

The measure of interestingness generated by D and Θ is defined by

ΥD,Θ(r) = D(∆PQ, ∆P ×Θ)−D(∆Q, Θ).

In the above definition Θ represents the a posteriori distribution of Q, while ∆Q

is the distribution ofQ observed from the data. The termD(∆Q, Θ) measures the
degree to which ∆Q diverges from the prior distribution Θ, and D(∆PQ, ∆P ×Θ)
measures how far ∆PQ diverges from the joint distribution of P and Q in case
they were independent, and Q was distributed according to Θ.

The justification for the correcting term D(∆Q, Θ) is given in the following
theorem:

Theorem 2. If P and Q are independent, and D is a Cziszar measure of di-
vergence then ΥD,Θ(P → Q) = 0.

Observe that if D is a Cziszar divergence D = Dφ, then the invariance of
these divergences implies:

ΥDφ,Θ(P → Q) = Dφ(∆PQ, ∆P ×Θ)−Dφ(∆P ×∆Q, ∆P ×Θ).

3 Properties of the General Measure of Interestingness

Initially, we discuss several basic properties of the proposed measure.

Theorem 3. If D is a Cziszar divergence, then

ΥD,∆Q
(P → Q) = ΥD,∆P

(Q → P )

The above property means that when the a posteriori distribution of the
consequent is always assumed equal to the distribution observed from data, then
the measure is symmetric with respect to the direction of the rule, i.e. exchanging
the antecedent and consequent does not change the value of the interestingness.

Theorem 4. Let D be a Cziszar divergence. If R is a set of attributes inde-
pendent of P , and jointly of PQ, then, for any Θ we have ΥD,Θ(RP → Q) =
ΥD,Θ(P → Q).

If R is a set of attributes independent of Q, and jointly of PQ, then
ΥD,∆RQ

(P → RQ) = ΥD,∆Q
(P → Q).

The previous result gives a desirable property of ΥD,Θ since adding indepen-
dent attributes should not affect rule’s interestingness. In particular, when Θ
equals the observed distribution of the consequent, then Υ is not affected by
adding independent attributes to either the antecedent or the consequent.

Next, we consider several important special cases of the interestingness mea-
sure.

If the divergence D and the a priori distribution used in the definition of
the interestingness measure are chosen appropriately, then the interestingness
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ΥD,Θ(P → Q) is proportional to a gain of the set of attributes of the consequent
Q of the rule relative to the antecedent P . Both the Gini gain, gaingini(Q,P ),
and the entropy gain, gainshannon(Q,P ), can be obtained by appropriate choice
of D. Moreover a measure proportional to the χ2 statistic can be obtained in
that way.

Suppose that the attribute sets P,Q have the distributions

∆P =
(
x1 · · · xm
p1 · · · pm

)
, and ∆Q =

(
y1 · · · yn
q1 · · · qn

)
.

Let ρij = {t ∈ ρ|t[P ] = xi and t[Q] = yj} and let pij = |ρij |
|ρ| for 1 ≤ i ≤ m and

1 ≤ j ≤ n.

Theorem 5. Let P −→ Q be a rule in the table τ = (T,H, ρ). If D = DKL then

ΥD,Θ(P → Q) = gainshannon(Q,P ),

regardless of the choice of Θ.

The above theorem means that for the case DKL the family of measures gen-
erated by Θ reduces to a single measure: the Shannon gain (mutual information).
This is not the case for other divergences.

Theorem 6. Let P −→ Q be a rule in the table τ = (T,H, ρ). If D = Dχ2 and
Θ = Un, where n = |dom(Q)|, then

ΥD,Θ(P → Q) = n · gaingini(Q,P ).

Theorem 7. We have ΥDχ2 ,∆Q
(P −→ Q) is proportional to χ2(P,Q), the chi-

squared statistics [1] for attribute sets P , Q.

Note that above we treat attribute sets P = {A1, . . . , Ar} and Q =
{B1, . . . , Bs} as single attributes with the domains given by (1). This is appropri-
ate, since we are interested in how one set of attributes P influences another set of
attributesQ. Another way, used in [4], is to compute χ2(A1, . . . , Ar, B1, . . . , Bs),
however this is not what we want.

The case when D = Dχ2 is of practical interest since it includes two widely
used measures (χ2, and gaingini) as special cases, and allows for obtaining a
continuum of measures “in between” the two.

Theorem 8 stated below shows that the generalized measure interestingness
ΥD,Θ(P → Q) is minimal when P and Q are independent and thus, it justifies
our definition of this measure through variational considerations.

Theorem 8. Let ΥD,Θ be the measure of interestingness generated by the a pos-
teriori distribution Θ and the Kullback-Leibler divergence, or the χ2-divergence
and let P → Q be a rule. For any fixed attribute distribution ∆P , ∆Q and a fixed
distribution Θ, the value of ΥD,Θ(P → Q) is minimal (and equal to 0) if only if
∆PQ = ∆P ×∆Q, i.e., when P and Q are independent.
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We saw that gainshannon and gaingini are equivalent to ΥDKL,Un and ΥDχ2 ,Un ,
respectively. It is thus natural to define a notion of gain for any divergence D as

gainD(P → Q) = ΥD,Un
(P → Q).

Let ∆Q|pi denote the probability distribution of Q conditioned on P = pi. For
any Cziszar measure Dφ we have:

gainDφ
(P → Q) = Dφ(∆PQ, ∆P × Un)−Dφ(∆Q,Un)

=
m∑
i=1

pi

n∑
j=1

1
n
φ

(
pij

pi · 1
n

)
−Dφ(∆Q,Un)

= −
[
Dφ(∆Q,Un)−

m∑
i=1

piDφ(∆Q|pi,Un)
]
.

As special cases gaingini ≡ gainχ2 , and gainshannon ≡ gainKL.
A parameterized version of Υ that takes into account the degree of confidence

in the distribution of the consequent as it results from the data is introduced
next.

Let us define the probability distribution Θa, a ∈ [0, 1] by

Θa = a∆Q + (1− a)Un.

The value of a expresses the amount of confidence we have in ∆Q estimated from
the data. The value a = 1 means total confidence, we assume the probability
estimated from data as the true probability distribution of Q. On the other
hand, a = 0 means that we have no confidence in the estimate and use some
prior distribution of Q instead. In our case, the prior is the uniform distribution
Un. Note that Θ1 = ∆Q, and Θ0 = Un.

We can now define

ΥD,a = ΥD,Θa .

Note that when D = Dχ2 , we have (up to a constant factor) both χ2(P → Q)
and ginigain(P → Q) as special cases of ΥDχ2 ,a. Moreover by taking different
values of parameter a we can obtain a continuum of measures in between the
two.

As noted before, both Dχ2 and DKL divergence measures are special cases of
Havrda-Charvát divergence DHα

for α → 1, and α = 2 respectively. We can thus
introduce Υα,a = ΥDHα ,Θa , which allows us to obtain a family of interestingness
measures, including (up to a constant factor) all three measures given in Sect. 3
as special cases, by simply changing two real valued parameters α and a.

Also note that for a = 0, we obtain a family of gains (as defined in Sect. 3)
for all the Havrda-Charvát divergences.
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4 Experimental Results

We evaluated the new measure on a simple synthetic dataset and on data from
the UCI machine learning repository [2]. We concentrated on the case D = Dχ2 ,
as potentially most useful in practice, and found interestingness of rules for
different values of parameter a (see Sect. 3).

To ensure measures throughout the family handle obvious cases correctly,
and to make it easy to observe properties of the measure for different values of
parameter a we first evaluated the rules on a synthetic dataset with 3 attributes
A,B,C and with known probabilistic dependencies between them.

Values of attributes A and B have been generated from known probability
distributions:

∆A =
(
0 1 2
0.1 0.5 0.4

)
, ∆B =

(
0 1
0.2 0.8

)
.

Attribute C depends on attribute A. Denote ∆C |i the distribution of C condi-
tioned upon A = i. We used

∆C |0 =
(
0 1
0.2 0.8

)
, ∆C |1 =

(
0 1
0.5 0.5

)
, ∆C |2 =

(
0 1
0.7 0.3

)
,

One million data points have been generated according to this distribution,
for a few values of a we sorted all possible rules based on their ΥDχ2 ,a interest-
ingness values. Results are given in Table 1.

1. Attribute B is totally independent of both A and C, so any rule containing
only B as the antecedent or consequent should have interestingness 0. The
experiments confirm this, for all values of parameter a such rules have inter-
estingness close to zero, significantly lower than the interestingness of any
other rules.

2. For a = 0 (the first quarter of the table) Υ becomes the Gini gain, a measure
that is strongly asymmetric (and could thus suggest the direction of the
dependence) and strongly affected by adding extra independent attributes
to the consequent (which is undesirable).

3. For a = 1 (the last quarter of the table) Υ becomes (up to a constant
factor) the χ2 measure of dependence. This measure is totally symmetric
and not affected by presence of independent attributes in either antecedent
or consequent. Indeed, it can be seen that all rules involving A and C have
the same interestingness regardless of the presence of B in the antecedent or
consequent.

4. As a varies from 0 to 1 the intermediate measures can be seen to become
more and more symmetric. Measures for a being close to but less than 1
could be of practical interest since they seem to ‘combine the best of the
two worlds’, that is, are still asymmetric and pretty insensitive to presence
of independent attributes in the consequent. E.g. for a = 0.9 all rules having
A in the antecedent and C in the consequent have interestingness close to
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Table 1. Rules on synthetic data ordered by ΥD
χ2 ,a for different values of a

rule ΥD
χ2 ,0 rule ΥD

χ2 ,0.5

A→BC 0.122061 A→BC 0.0989161
C→AB 0.0896776 AB→C 0.0898611

AB→C 0.0896287 A→C 0.089861
A→C 0.0896287 C→AB 0.0769886

BC→A 0.065851 BC→A 0.0683164
C→A 0.0658484 C→A 0.0683142
B→AC 3.16585e-06 B→AC 2.50502e-06
B→A 2.7369e-06 B→A 2.35091e-06

AC→B 1.37659e-06 AC→B 1.51849e-06
A→B 1.32828e-06 A→B 1.46355e-06
B→C 1.70346e-07 B→C 1.72781e-07
C→B 1.10069e-07 C→B 1.22814e-07

rule ΥD
χ2 ,0.9 rule ΥD

χ2 ,1

A→BC 0.0908769 BC→A 0.0905673
AB→C 0.0903859 A→BC 0.0905673

A→C 0.0903859 C→AB 0.0905654
C→AB 0.0834734 AB→C 0.0905654

BC→A 0.082009 A→C 0.0905653
C→A 0.082007 C→A 0.0905653
B→AC 2.19739e-06 AC→B 2.15872e-06
B→A 2.12646e-06 B→AC 2.15872e-06

AC→B 1.95101e-06 A→B 2.08117e-06
A→B 1.87986e-06 B→A 2.08017e-06
B→C 1.73782e-07 C→B 1.74126e-07
C→B 1.57306e-07 B→C 1.74126e-07

0.09, while rules having C in the antecedent and A in the consequent have
all interestingness close to 0.082 regardless of the presence or absence of B
in the consequents. So for a = 0.9 the intermediate measure correctly ranked
the rules indicating the true direction of the relationship.

We then repeated the above experiment on data from the UCI machine learn-
ing repository [2]. Here we present results for the agaricus-lepiota database con-
taining data on North American Mushrooms. To make the ruleset size manage-
able we restrict ourselves to rules involving the class attribute indicating whether
the mushroom is edible or poisonous.

In the experiment we enumerated all rules involving up to 3 attributes and
ranked them by interestingness for different values of parameter a. Top ten rules
for each value of a are shown in Table 2. For a = 1 the symmetric rules were
removed.

We noticed that for any value of a most of the rules involve the odor at-
tribute. Indeed the inspection of data revealed that knowing the mushroom’s
odor allows for identifying its class with 98.5% accuracy, far better than for any
other attribute.
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Table 2. Rules on mushroom dataset ordered by ΥD
χ2 ,a for different values of a

rule ΥD
χ2 ,0

class→odor ring-type 9.84024
class→odor spore-print-color 9.16709
class→odor veil-color 8.22064
class→odor gill-attachment 8.2026
class→gill-color spore-print-color 7.82161
class→ring-type spore-print-color 7.62564
class→odor stalk-root 7.60198
class→gill-color ring-type 7.28972
class→odor stalk-color-above-ring 7.19584
class→odor stalk-color-below-ring 7.14197

rule ΥD
χ2 ,0.9

odor→class stalk-root 3.61877
class stalk-root→odor 3.2782

odor→class cap-color 2.59777
odor→class ring-type 2.54896
odor→class spore-print-color 2.54864

stalk-color-above-ring→class stalk-color-below-ring 2.47669
class cap-color→odor 2.46105

odor→class gill-color 2.45027
stalk-color-below-ring→class stalk-color-above-ring 2.38593
class spore-print-color→odor 2.35384

rule ΥD
χ2 ,1

class stalk-root→odor 4.11701
class stalk-color-below-ring→stalk-color-above-ring 3.38287

stalk-color-below-ring→class stalk-color-above-ring 3.37968
class ring-type→odor 2.98764
class cap-color→odor 2.85308

odor→class gill-color 2.82423
odor→class spore-print-color 2.56331
odor→class stalk-color-below-ring 2.44004

class stalk-color-above-ring→odor 2.42725
class gill-color→spore-print-color 2.42224

We note also that similar rules are ranked close to the top for all values
of a, which proves that measures thoughout the family identify dependencies
correctly. From data omitted in the tables it can be observed that, as in the case
of synthetic data, when a approaches 1 the measures become more and more
symmetric and unaffected by independent attributes in the consequent.

It has been shown experimentally that measures throughout the Υ family
are useful for discovering interesting dependencies among data attributes. By
modifying a numerical attribute we can obtain a whole spectrum of measure of
varying degree of symmetry and dependence on the presence of extra attributes
in the rule consequent. Especially interesting seem to be measures with a param-
eter close to, but less than 1, which combine the relative robustness against extra
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independent attributes, while retaining the asymmetry suggesting the direction
of the dependence.

5 Open Problems and Future Directions

Above we assumed complete confidence in the estimate of the distribution of P
from the data. We may want to relax this restriction and assume that P has
some a posteriori distribution Ψ (not necessarily equal to ∆P ), and Q the prior
distribution Θ. We can then generalize Υ as Υ ′

D,Θ,Ψ (P → Q) = D(∆PQ, Ψ ×
Θ) − D(∆Q, Θ) − D(∆P , Ψ). When Ψ = ∆P , Υ ′ reduces to Υ defined above.
Some of the properties of Υ are preserved by this new definition. For example,
if D = DKL, and P , Q be independent, then Υ ′

Θ,Ψ,D(P → Q) = 0. Also, if
P −→ Q is a rule in the table τ = (T,H, ρ) and D = DKL then Υ ′

D,Θ,Ψ (P →
Q) = gainshannon(Q,P ) regardless of the choice of Θ and Ψ .

Further theoretical and experimental evaluation of the new measure is nec-
essary. It would be of practical interest to find a modified general definition of
gain that, being asymmetric, is not affected by adding independent attributes
to the consequent.

As a primary application, we envision using the measure in association rule
mining systems for sorting the discovered association rules. For this purpose it
would be necessary to generalize the measure to express the interestingness of a
rule with respect to a system of beliefs (that could be represented for example by
a set of rules). Then, the rule would be considered interesting if its probability
distribution would be significantly different from the one expected based on the
set of beliefs. See [13] for a discussion of a similar problem.

Further work is necessary to assess the impact that the generalized measure
would have on other common datamining tasks like attribute selection in decision
trees. It might, for example, be beneficial to use values of parameter a close to
1 in the upper parts of the tree when large amount of data is still available, and
decreasing the value of a at lower levels, where the amount of data is small and
thus we have less confidence in the estimates of probabilities.
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