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Abstract. Most search engines return a lot of unwanted information. A
more thorough filtering process can be performed on this information to
sort out the relevant documents. A new method called Frequency Domain
Scoring (FDS), which is based on the Fourier Transform is proposed.
FDS performs the filtering by examining the locality of the keywords
throughout the documents. This is examined and compared to the well
known techniques Latent Semantic Indexing (LSI) and Cosine measure.
We found that FDS obtains better results of how relevant the document
is to the query. The other two methods (cosine measure, LSI) do not
perform as well mainly because they need a wider variety of documents
to determine the topic.

1 Introduction

The ability of automatically classifying a document accurately has become an
important issue in the past few years due to the exponential growth of the
Internet and the availability of on-line information. Many methods such as topic
identification have been tried by search engines creators and abused by web page
writers who try their best to mislead the search engine so that their page appears
at the top of the search results.

At present, the only way to find any useful information on the Internet is to
use a search engine and manually sort through all of the results returned.

There has been a huge interest in relevant document retrieval, and several
people have developed methods to allow the user to obtain the right information.
For example, Spertus [10] uses different types of connectivity and spatial locality
to detect relevant pages; Mladenic̀ [6] examines the pages previously visited by
the user and uses these examples to learn what to retrieve in the future; Carrière
et al. [3] calculates the score of a page based on how many relevant pages point
to it through links; Ngu et al. [7] recommend that rather than search engines
maintaining information about the entire Internet, each site should produce the
information needed to produce better search results; Howe et al. [5] queries the

L. De Raedt and A. Siebes (Eds.): PKDD 2001, LNAI 2168, pp. 362–373, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

http://www.ee.mu.oz.au/cubin


Internet Document Filtering Using Fourier Domain Scoring 363

existing range of search engines to obtain the best results from the collection of
pages returned.

The method proposed here will examine the documents searched and try to
find those with the topic requested by giving a score based on their spectrum,
so that the user obtains the documents he/she truly requires.

This paper will proceed as follows, Sect. 2 contains a description of the doc-
ument filtering process, Sect. 3 gives the problem formulation and explains how
the current methods of filtering are not using all of the document information,
Sect. 4 introduces the FDS method and explains how to calculate the score,
Sect. 5 contains a short discussion on the computational complexity of the FDS
method, Sect. 6 shows results from two separate experiments (one based on the
TREC database and the other from three actual Internet searches) and gives an
analysis of the results from both experiments, and finally the conclusion is given
in Sect. 7.

2 Document Filtering

The objective of document filtering is to extract all of the relevant documents
related to a certain topic from a set of documents of unknown topics. Examples of
document filtering methods include the cosine measure, latent semantic indexing
(LSI) and the new superior method Frequency Domain Scoring (FDS) introduced
in this paper.

The methods used in this paper perform the filtering on a document set con-
sidered relevant by a selection of Internet search engines. Therefore the document
filtering will be performed on a local machine rather than a remote machine.

Even though the trials were performed on the results of a few Internet search
engines, these methods could easily be incorporated in the search engine itself.

3 Problem Formulation

Let A(t) be the entire collection of documents on the Internet at time t, where
A(t) = {d0, d1, . . . , dN } and 0 < N <∞ is the number of documents on the In-
ternet at time t. Each document dn is represented as the tuple {in,Ln} where i is
the information contained in document n and Ln ⊂ A(t) is the set of documents
which can be accessed through dn via hypertext links.

There exists a set RT ⊂ A(t), where RT is the set of all relevant documents
to topic T ∈ T (the topic space). We want a function S : T → A(t) such
that S(T ) = RT . The current non-existence of the function S is the reason
why search engines (which try to approximate S) do not always return correct
results. Internet search engines will give us a subset of RT and a set of irrelevant
information (related to the search topic T ). This can be represented as RT ∪ET

where RT ⊆ RT and ET ⊂ A(t)\RT .
Rather sifting through the entire collection of documents on the Internet

(A(t)), we will use the results from several search engines (RT ∪ET ) and try to
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Fig. 1. This figure gives a visual example of the problem at hand. It can be seen that
the set of documents returned by search engines contain irrelevant information. The
problem is how do we extract the useful information from this set given to us

extract the set of documents RT or remove the unwanted (irrelevant) ET . This
is shown in Fig. 1. This approach will lead to a good approximation of S.

Current searching methods use the following approach. By defining a function
g : A(t) → R

M, we are able to represent dn ∈ A(t) as an M dimensional vector
in real space. The mapping is performed by treating each word in the document
as a single dimension, the number of times that word appears in the document
will be its value. Therefore

g(dn) = δn =
[
c(dn, w1) c(dn, w2) . . . c(dn, wM)

]T (1)

is a document vector, where c(dn, wm) ∈ N is the frequency count of word wm,
all wm are unique and the dictionary contains M words. This document vector
is then used to give the relevance for the document.

The above mapping of the document space into theM dimensional real space
causes all of the important spatial information of the documents (the order of
the words) to be lost. This also applies to the topic spatial information.

4 Frequency Domain Scoring

When a few key words are entered to search for, they are usually on the one
topic. For example, if the words “aluminium cricket bat” is entered, we would
expect to get documents on aluminium cricket bats. The classification methods
listed so far would also return documents on cricket bats and aluminium.

To make use of the spatial information of the document, the vectors used
here represent the positions of the search terms throughout the documents.
Documents which have keywords appearing periodically and which contain the
keywords together are given a higher relevance than the documents that have
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the keywords apart. To analyse the relative positions the vectors are mapped
into the frequency domain.

Just as the discrete Fourier transform can map discrete time intervals in to
the frequency domain, so to can it map discrete word spatial intervals into the
frequency domain, as shown in Fig. 2

DFT

DFT

DFT

Calculate variance of phase for each frequency bin

Calculate document score

Calculate magnitude for each frequency bin
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Fig. 2. This picture gives a visual example of how the Frequency Domain Scoring is
performed. As shown, for each word in the search term, the document is split into
equally sized bins. The value of each bin is the frequency of the word within that
section of text. The DFT is performed and the magnitude and phase results are used
to give the document score

By counting the number of appearances of a word in a document, we can
treat the word position as the position in time. Performing the DFT allows us to
observe the spectrum of the word. By splitting the spectrum into the magnitude
and phase, we can see the power and delay of the word at certain frequencies.

By treating each word as a discrete time interval, we get a string of ones and
zeros. To be more efficient, sequences of words can be clustered into bins (eg.
the first fifty words in bin 1, the second fifty in bin 2, ...). This reduces the size
of the input to the DFT and also gives larger counts than one in each bin.

Once the DFT is performed, the word spectrum shows the frequency com-
ponents of which the word signal is made up. Each frequency component is a
complex number of the form Hfe

iφf where Hf ∈ R represents the power of the
frequency component f , and φf ∈ R is the phase shift of f .

Terms made from several words are normally the topic of the document when
the words appear close together and periodically. Therefore a document in which
frequency f has a large magnitude (Hf ) for all of the words from the set T , and
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the phases of each word from T are similar, then it is most likely that the T is
a subset of the topic.

In mathematical terms, given a query T where

T = {w1, w2, . . . , wM} (2)

we can define a counting function cf : A(t) × T → R
B

cf(dn, wm) =
[
c1(dn, wm)/β c2(dn, wm)/β . . . cB(dn, wm)/β

]
(3)

where cb(dn, wm) is the count of word wm in bin 1 ≤ b ≤ B of document dn and
β is the number of words per bin. The spectrum of cf can be found using the
Fourier transform.

C(dn, wm) = F [cf(dn, wm)] (4)

=
[
H

(n,m)
1 eiφ

(n,m)
1 H

(n,m)
2 eiφ

(n,m)
2 . . . H

(n,m)
B eiφ

(n,m)
B

]
(5)

where F is the Fourier Transform, H(n,m)
b ∈ R and φ(n,m)

b ∈ R are the magni-
tude and phase of the bth frequency bin from the nth document and mth word
respectively. If

var
({
φ
(n,1)
b , φ

(n,2)
b , . . . , φ

(n,M)
b

})
< ε (6)

and
H

(n,m)
b > E ∀ m (7)

where ε is a small value and E is a large value, then more likely that dn ∈ RT .
Therefore we want to give a higher relevance score to those documents with a
higher magnitude and lower variance in phase of each frequency component.

The measure of variance does not take into account the circular data of the
phase (modulo 2π). To overcome this problem, a measure of precision (rather
than variance, not to be confused with the precision measure of document re-
trieval) was used. If

C̄
(n)
b =

1
M

M∑
m=1

cosφ(n,m)
b and S̄

(n)
b =

1
M

M∑
m=1

sinφ(n,m)
b (8)

then the precision (r̄) and mean (φ̄) are defined by

C̄
(n)
b = r̄(n)b cos φ̄(n)b and

¯
S
(n)
b = r̄(n)b sin φ̄(n)b (9)

so

r̄
(n)
b =

√(
C̄
(n)
b

)2
+
(
S̄
(n)
b

)2
(10)

The precision has a range of [0, 1], where 1 is maximum precision. The notion of
precision of the phases can be seen in the visual example given in Fig. 3.
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Fig. 3. This picture gives a visual example of how the precision function works. If each
phase is considered as a unit vector (thin vectors) centered at zero, the precision will
be the average of these vectors (thick vector)

This gives a score function of:

SFDS (dn, T ) =
B∑

b=1

r̄
(n)
b log

(
λ+

M∑
m=1

H
(n,m)
b

M

)
(11)

where

λ =

{
0 if H(n,m)

b = 0 ∀ m
Q if H(n,m)

b �= 0 ∀ m (12)

where Q is a constant positive real number. Note that if the AC components
are ignored, FDS will perform the same as the cosine measure. This is because
r̄
(n)
1 = 1 for any n when b = 1 . Therefore the cosine measure can be viewed as a
special case of the FDS measure. By examining the spectrum of the words (and
not just the count) we are able to obtain a better understanding of the content
of the document.

The λ value was inserted to give a higher ranking to documents which contain
all of the words in the query. This can be adjusted to suit the users preference.

5 Computational Complexity

Choosing an information retrieval method just because it gives accurate results
is not sufficient. The methods have to be practical. This is why computational
complexity comes into play when deciding which method is best. In most cases
there is a trade off between speed and accuracy, where the level chosen should
suit the user.

All methods suggested require scanning through the documents, word by
word. This stage only depends on the length of the documents and has been
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omitted from the analysis since it is common to all methods. This process can
also be pre-computed and stored for future classifications.

The FDS method performs the Fourier transforms on each word in the search
query. Since the FDS method depends only on the document being processed,
the spectral values have to be calculated only once and can then stored for later
use.

To speed up the process, the Radix-2 FFT [8] was used. The only drawback
to using this method is that the bin size must be a power of two (B = 2p, p ∈ N).
This drops the computational complexity from O(N2) (direct DFT calculation)
to O

(
N
2 log2N

)
(Radix-2).

This implies that for M unique words in the search query, the time taken to
calculate the score of one document will be in the order of O

(
MN
2 log2N

)
.

6 Results

We conducted two large experiments, one using the TREC database [11] and the
other using a database of documents selected from the results of Internet search
engines.

6.1 Preliminaries

To find how effective the FDS method was we compared the results given with
trials using the cosine measure [12] and Latent Semantic Indexing (LSI) [1]. Pre-
processing was performed on the data to make computation easier and give fairer
results. This consisted of removing stop words, stemming, and using log-entropy
normalisation (found in [4]). After performing several trials using different values
of Q, it was chosen to be 1. The bin size was set to 16 to give a good tradeoff
between accuracy and disk space. The document filtering methods FDS, cosine
measure, and LSI are then performed to evaluate their relative merits.

The results (in table 2 and table 3) were evaluated by examining two accuracy
measures of precision, which in the information retrieval sense, is the measure of
the proportion of relevant documents to retrieved documents. The two measures
are:

Average Precision This value is best explained by observing table 1.
R-Precision is the precision after the first R documents, where R is the number

of relevant documents for that query.

The time taken to perform the ranking was very similar for each of the
methods.

6.2 Methods Compared

Cosine Measure. The score for each document was calculated by finding the
normalised dot product of the document vector (shown in equation 1 and the
query vector. This method will be referred to as COS throughout this document.
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Table 1. The average precision is calculated by first calculating the sub-precisions of
each relevant document (shown on each line of the table). Sub-precision is found by
including only the documents ranked higher than the selected relevant document

Relevant document number Rank Precision
1 r1 1/r1

2 r2 2/r2

3 r3 3/r3

...
...

...
n rn n/rn

Average Precision:
∑n

i=1 i/ri

n

Latent Semantic Indexing. Latent Semantic Indexing produces document
vectors of smaller dimension than the cosine measure, but closest to them in the
least squares sense, via Singular Value Decomposition (SVD) [2]. This reduction
of dimensionality reveals a latent structure of the documents that would not
have been noticed otherwise. In this experiment, the dimension was reduced to
280.

Due to the large amounts of data and most of it being zeros, a sparse matrix
data structure was used (found in [9]). Results were found by comparing each
document vector to the query vector using the normalised dot product. The
query vector was created by taking the average of the word vectors (produced
by the SVD) that appeared in the search term. This method will be referred to
as LSI throughout this document.

6.3 Experiment One: TREC Data

The TREC data [11] contains millions of documents from many different sources.
This is useful to evaluate Internet search engines and searching tools for large
databases. The method proposed in this paper is a refining process. It takes a
subset of the whole data and extracts the truly relevant information from that.
To emulate the process of the search engines, a number of random documents
were chosen from the original data set, while making sure the documents clas-
sified relevant and irrelevant were included (shown in Fig. 4). The irrelevant
documents are those that have been classified as relevant by other information
retrieval methods but found to be wrong. By including these documents, the
information retrieval methods applied here will be truly challenged. The results
were evaluated using ‘trec eval’, which was supplied by the TREC organisers.

The results from using the TREC data are shown in table 2. The data focused
on was from the Associated Press document set, using queries 101 through to 200.
Two experiments were run, the first processed 500 pseudo-random documents
from the AP document set, the second processed 1000 documents.
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Randomly extracted Documents

TREC Documents

Classified Documents

Fig. 4. To emulate the process of the search engines, a sample of relevant and irrelevant
documents were taken from the TREC data set to feed into the document filtering
process

It should be noted that it would have been very unlikely that any document
contained every word in a selected query, due to the nature of the query. Rather
than being a phrase or a few key words (which is what would be normally
supplied to a search engine), the queries were structured into the form of a
description of desired documents.

Table 2. Results given by trec eval from a semi-random sample of documents using
various filtering methods. FDS has the greatest precision for 500 documents and gives
similar results to COS for 1000 documents

500 documents 1000 documents
Method Average

Precision
R-
Precision

Average
Precision

R-
Precision

FDS 0.4439 0.3972 0.4560 0.3933
COS 0.4371 0.3830 0.4598 0.3930
LSI 0.3756 0.3508 0.3661 0.3508

The results show that FDS gives better results compared to the other meth-
ods. For all of the methods, the scores are low. A reason for this is the way the
TREC queries are set up. A typical TREC query is of the form :

A {type of document} will identify {case 1} and {case 2} or . . . but not . . .

Therefore it requires parsing to obtain the keywords and anti-keywords. Some of
the query results with lower precision did not contain examples. They only con-
tained statements like “...contains information about a country...”. The methods
used contained no data on what country names are and so could not find the
relevant documents.
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6.4 Experiment Two: Internet Documents

The following results were obtained from a data set of documents returned from
various search engines on the Internet after searching for three items with various
degrees of difficulty. The query “Aluminium Cricket Bat” had only a few relevant
documents, “Bullet the blue sky mp3” had some relevant documents, and “Prank
calls from Bart Simpson to Moe” contained many relevant documents. The data
was cleaned by extracting the text from the html structure, changing all the
letters to lowercase, removing any stop-words (listed in a previously compiled
list) and converting each word to its stem by using Porter’s Stemming Algorithm.

The html documents were individually examined and assigned a label of
relevant or not relevant. These were then compared with the score given by the
listed methods (mentioned throughout the document). The results are presented
in table 3 showing the method, the number of documents used, the number of
relative documents, and the precision of the method for that search.

Table 3. This table shows how well the each method worked on different sets of
documents retrieved from the Internet

Search for “Aluminium Cricket Bat”
Method No. of Documents Average Precision R-Precision

Total Relevant
FDS 120 2 0.5667 0.5000
COS 120 2 0.2857 0.5000
LSI 120 2 0.2845 0.5000

Search for “Bullet the blue sky mp3”
Method No. of Documents Average Precision R-Precision

Total Relevant
FDS 120 13 0.9822 0.9231
COS 120 13 0.7467 0.7692
LSI 120 13 0.6567 0.6923
Search for “Prank calls from Bart Simpson to Moe”

Method No. of Documents Average Precision R-Precision
Total Relevant

FDS 120 27 0.9279 0.9259
COS 120 27 0.7425 0.7778
LSI 120 27 0.7349 0.7778

By observing the results obtained, it can be seen that the FDS technique is a
superior method and works far better than the LSI and COS document indexing
schemes. This is due to the fact that FDS is able to extract more information
from the documents. LSI and COS treat the documents as though they are a
‘bag of words’, while FDS observes any structures of the searched terms in the
document. COS can be considered a special case of the FDS method, therefore
FDS is expected to obtain better results.
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7 Conclusion

While Internet search engines produce good results, they don’t always give us
exactly what we want. The proposed FDS method over comes this problem by
filtering the results given by the search engines. The LSI and COS methods need
a wide range of document types to really focus on the important documents. In
this case most of the documents will be of the same class and therefore these
methods will not work as well as the new FDS method.

LSI and COS methods could be considered sub-methods of FDS. LSI and
COS methods consider only the DC components while FDS makes use of the
full spectrum. This shows that LSI and COS do not require as much storage
space for the calculations since it only takes a fraction of the data needed by
FDS. But at the current rate in which storage media is growing in capacity,
this is hardly an issue. The size of the stored information is proportional to the
number of frequency components, which can be adjusted by changing the words
per bin.

FDS can be implemented on the client side (as discussed throughout this
document) or it could be implemented on the server side. It can easily be included
in systems like Internet search engines since it is scalable (when extra documents
are introduced into the database, the other documents are not affected), the
frequency data can easily be put into an indexing table (current indexing tables
only include the DC component, therefore FDS would be a simple extension of
this), and the most important reason is that it gives excellent results. Including
the FDS method in any search engine would boost the quality (in terms of
results) of the search engine, and return a more relevant document set.
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