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Abstract. Changes in the normal rhythmicity of a human heart may result in
different cardiac arrhythmias, which may be immediately fatal or cause irrepa-
rable damage to the heart when sustained over long periods of time. The ability
to automatically identify arrhythmias from ECG recordings is important for
clinical diagnosis and treatment, as well as, for understanding the electrophysio-
logical mechanisms of the arrhythmias. This paper proposes a novel approach
to efficiently and accurately identify normal sinus rhythm and various ventricu-
lar arrhythmias through a combination of phase space reconstruction and ma-
chine learning techniques. Data was recorded from patients experiencing spon-
taneous arrhythmia, as well as, induced arrhythmia. The phase space attractors
of the different rhythms were learned from both inter- and intra-patient ar-
rhythmic episodes. Out-of-sample ECG rhythm recordings were classified using
the learned attractor probability distributions with an overall accuracy of 83.0%.

1 Introduction

Thousands of deaths occur daily due to ventricular fibrillation (VF)[1]. Ventricular
fibrillation is a disorganized, irregular heart rhythm that renders the heart incapable of
pumping blood. It is fatal within minutes unless externally terminated by the passage
of a large electrical current through the heart muscle. Automatic defibrillators, both
internal and external to the body, have proven to be the only therapy for thousands of
individuals whom experience ventricular arrhythmia. There is evidence [2] to suggest
that the sooner electronic therapy is delivered following the onset of VF, the greater
the success of terminating the arrhythmia, and thus, the greater the chance of survival.
Defibrillators are required to classify a cardiac rhythm as life threatening before the
device can deliver shock therapy; the patient is usually unconscious. Because of the
hemodynamic consequences (i.e., the heart ceases to contract, thus no blood flows
through the body) that accompany the onset of lethal VF, a preventive approach for
treating ventricular arrhythmia is preferable, such as low-energy shock, pacing regi-
mens and/or drug administration to prevent the fatal arrhythmia from occurring in the
first place. Furthermore, there is evidence [3] to suggest that high-energy shocks de-
livered during lethal arrhythmia may be harmful to the myocardium. Thus, the ability
to quickly identify and/or predict the impending onset of VF is highly desirable and
may increase the alternate therapies available to treat an individual prone to VF.
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Many of the current algorithms differentiate ventricular arrhythmias using classical
signal processing techniques, i.e., threshold crossing intervals, autocorrelation, VF-
filter, spectral analysis [4], time-frequency distributions [5], coherence analysis [6],
and heart rate variability [7, 8]. In order to improve frequency resolution and mini-
mize spectral leakage, these algorithms need five or more seconds of data when clas-
sifying the rhythms. This paper proposes that phase space embedding [9] combined
with data mining techniques [10] can learn and accurately characterize chaotic attrac-
tors for the different ventricular tachyarrhythmias in short data intervals. Others who
have used phase space techniques to study physiological changes in the heart include
Bettermann and VanLeeuwen [11], who demonstrated that the changes in heart beat
complexity between sleeping and waking states were not a simple function of the
heart beat intervals, rather the changes in heart beat complexity were related to the
existence of dynamic phases in heart period dynamics.

In this study, signals from two leads of a normal twelve lead ECG recording [12, 13]
are transformed into a reconstructed state space, also called phase space. Attractors
are learned for each of the following rhythms: sinus rhythm (SR), monomorphic ven-
tricular tachycardia (MVT), polymorphic ventricular tachycardia (PVT), and ventricu-
lar fibrillation. A neural net is used to learn the attractors using features formed from
the two-dimensional reconstructed phase space. Attractors are learned and tested from
inter- and intra-patient data.

1.1 ECG Recording Overview

An ECG recording is a measure of the electrical activity of the heart from electrodes
placed at specific locations on the torso. A synthesized surface recording of one
heartbeat during SR can be seen in Figure 1. The cardiac cycle can be divided into
several features. The main features are the P wave, PR interval, QRS complex, Q
wave, ST segment, and T wave. Each of these components represents the electrical
activity in the heart during a portion of the heartbeat [14].

• The P wave represents the depolarization of the atria.
• The PR interval represents the time of conduction from the onset of atrial ac-

tivation to the onset of ventricular activation through the bundle of His.
• The QRS complex is a naming convention for the portion of the waveform

representing the ventricular activation and completion.
• The ST segment serves as the isoelectric line from which amplitudes of other

waveforms are measured, and also is important in identifying pathologies,
such as myocardial infarctions (elevations) and ischemia (depressions).

• The T wave represents ventricular depolarization.

Recordings seen at different lead locations on the body may exhibit different morpho-
logical characteristics. Differences in the ECG recordings from one lead to another
are a result of the electrodes being placed at different positions with respect to the
heart. Thus the projection of the electrical potential at a point near the sinoatrial node
would differ from that seen by an electrode near the atrioventricular node. Differences
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in recordings from one person to another may be due to the difference in the size of
the hearts, the orientation of the heart in the body, exact lead location, and the
healthiness of the heart itself.

Fig. 1. Synthesized ECG recording for one heartbeat

2 Methods

2.1 Recordings

Simultaneous recordings of surface leads II and V1 of a normal 12 lead ECG [12, 13]
were obtained from six patients using an electrophysiological recorder. These patients
exhibited sustained monomorphic ventricular tachycardia, polymorphic ventricular
tachycardia, ventricular fibrillation and/or any combination of these rhythms during
electrophysiological testing (EP) and/or automatic implantable cardio-
verter/defribrillator (AICD) implantation. None of the data was from healthy patients.

Two independent observers classified the ECG recordings as one of the following
rhythms: VF, PVT, MVT, and SR. The criteria for classifying of the different rhythms
were [15-17]:

• VF was defined by undulations that were irregular in timing and morphology
without discrete QRS complexes, ST segments, or T waves with cycle length
< 200 msec.

• PVT was defined as ventricular tachycardia having variable QRS morphol-
ogy but with discrete QRS complexes with cycle length < 400 msec.

• MVT was defined as ventricular tachycardia having a constant QRS mor-
phology with cycle length < 600 msec.

• SR was defined by rhythms exhibiting P waves, QRS complexes, ST seg-
ments, and T waves with no aberrant morphology interspersed in the data in-
terval.

Ventricular tachycardia is most commonly associated in patients with coronary artery
disease and prior myocardial infarctions. Patients with dilated cardiomyopathies,
arrythmogenic right ventricular dysplasia, congenital heart disease, hypertrophic car-
diomyopathy, or mitral valve prolapses experience VT. Infrequently VT occurs in
patients without identifiable heart abnormalities[18]. Ventricular fibrillation occurs
primarily in patients with transient or permanent conduction block. Patients experi-
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ence VF under a variety of conditions, including: 1) electrically induced by a low-
intensity stimulus delivered while the ventricles are repolarizing; 2) electrically in-
duced by a burst (approximately 1 second duration) of 60 Hz AC current; 3) sponta-
neously induced due to ischemia leading to a conduction block; 4) reperfusion-
induced; and 5) electrically induced by high-intensity electric shocks[16].

Examples of the different rhythm morphologies can be seen in Fig. 2.
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Fig. 2. Recording for individual examples of rhythm morphologies: monomorphic ventricular
tachycardia (MVT), polymorphic ventricular tachycardia (PVT), ventricular fibrillation (VF),
and sinus rhythm (SR)

2.2 Preprocessing

Data were antialiased filtered with a cutoff frequency of 200 Hz and subsequently
digitized at 1,200 Hz. Up to 60 seconds of continuous data were digitized for each
rhythm. In this study, the data was divided into 2.5-second contiguous intervals of
MVT, PVT, VF or SR rhythms. The data were zero-meaned prior to further analysis.

2.3 Feature Identification

A two-dimensional phase space was constructed using the II and V1 ECG recordings.
Figure 3 illustrates the generated phase space.

Each rhythm is attracted to a different subset of the phase space. This subset of the
phase space is the attractor for that particular rhythm. Visually, one can differentiate
the rhythm attractors in Fig. 3. However, for an automatic defibrillator to automati-
cally classify rhythms, features must be determined that define each attractor. These
features were generated using the following method.
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Psuedo Code of Feature Identification
Combine all lead II training intervals
Take histogram of combined signals
Determine boundary values that separate the com-

bined data into 10 equally filled bins (each
bin contains ~10% of data)

Repeat for lead V1
Using boundaries for each lead, create 100 regions

in the phase space.
For each individual training interval
Determine percentage of data points in each region
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Fig. 3. Generated two-dimensional phase space for examples of MVT, PVT, VF, and SR. No-
tice that the different rhythms fill a different subset of the phase space

An example of the regions subdividing the phase space for an SR rhythm can be seen
in Fig. 4.

2.4 Attractor Learning

The attractors were learned using neural networks with 100 inputs, one output, and
two hidden layers. The first and second hidden layers consisted of 10 and 3 neurons
with tan-sigmoid transfer functions, respectively. The output layer was a log-sigmoid
neuron. The neural net was learned using the Levenberg-Marquardt algorithm in
MATLAB. The inputs to the neural networks were the percentage of data points in
each feature bin described in previously. Leave-one-out cross-validation [19] was
used in the training and testing of the neural networks. Given an indexed data set
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{ }nidi ,,1: K= containing n elements, n training/testing runs are performed. For the

jth run, the test set is { }jd and the training set is { }jidi ≠∀: .

Individual neural networks were used to classify each rhythm. The output of the neu-
ral net was rounded, in order that 1 classified the input data as the specific rhythm, 0
classified it as some other rhythm. For a patient exhibiting two different morpholo-
gies, two neural networks would be trained and tested to classify the ECG intervals.
An example of the classifier architecture for Patient 2 can be seen in Fig. 5. To be a
legitimate classification, only one neural network can classify the signal.
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Fig. 4. Example of feature bin boundaries for a 2.5 second recording of sinus rhythm

2.5 Comparative Analysis

We compare our new method against three others. The first comparison is to a method
based on the Lempel-Ziv complexity measure. The second comparison is to a method
based on heart rate. The third comparison is to two independent human expert observers.
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Fig. 5. Classifier architecture. The number of rhythm neural nets corresponds to the number of
rhythms for a particular set of data. For sets of data with more than two rhythms to classify the
XOR box is more complicated than a single exclusive OR
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Zhang et al. [20] proposed a method for detecting MVT, VF, and SR using the Lem-
pel-Ziv complexity measure. The complexity measure is a function of the number of
patterns found in a string of threshold crossings. For each interval of data, a new
threshold was calculated. As with the method proposed in this paper, Zhang’s com-
plexity measure does not need to detect the occurrences of beats. They used various
interval lengths to determine the minimum amount of data needed to attain 100%
training accuracy; no test accuracy was determined. A seven second interval was
found to be the minimum length needed to correctly discriminating the three rhythms.
For the rhythms (MVT, VF, and SR), intervals of length two and three seconds
achieved training accuracies of (93.14%, 95.10%, and 98.04%) and (93.14%, 97.55%,
and 95.59%), respectively. Zhang classified the rhythms using the following cutoff
values for the complexity measures:

• SR – for complexity measures less than 0.150
• MVT – for complexity measures between 0.150 and 0.486
• VF – for complexity measures greater than 0.486.

Heart rate is used in many AICDs to discriminate one rhythm from another. Med-
tronic, Inc. a commercial maker of AICDs uses rate detection zones and different
counts to detect and classify tachyarrhythmias [17]. AICDs count the number of beats
in each detection zone, if a specified number of beats are within a particular zone
without a SR rhythm beat being detected, the interval is marked as a tachyarrhythmia.
Since the data intervals used are only two and half seconds long, there are not enough
beats to be counted, so only the heart rate is used to classify the rhythm intervals. For
each individual interval, thresholds for marking a new beat were set to 60% of the
maximum amplitude of that interval.

3 Results

3.1 Data

Six patients comprised the study population. The heart rhythms exhibited by the six
patients can be seen in Table 1. Four of the patients exhibited different combinations
of two or three types of rhythms. The last two patients exhibited all four types of
rhythms. Two independent observers performed the original rhythm classification.

Table 1. Patient and number of 2.5s rhythm intervals experienced

Patient MVT PVT VF SR
1 23 27
2 6 12
3 23 30
4 15 8 4
5 15 8 2 33
6 20 6 5 34
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Overall inter-observer agreement for rhythm classification was 80.7%. The two ob-
servers conferred to reach consensus on the classification of the remaining 19.3%.
The intervals used in this study were not meticulously selected to have comparable
amplitudes, waveforms, and heart rates. The intervals were selected blindly from
rhythms classified by the two observers.

3.2 Intra-patient Classification

For each patient, classifiers were created for each rhythm interval. The neural nets in
the classifiers were able to learn the training data within approximately 20 epochs
with 100% accuracy, with leave-one-out cross-validation. For the training data, the
classifiers accurately identified rhythm type from 69.8% to 83.3% of the time with an
overall average accuracy of 77.1%. The accuracy for each patient’s classifier is listed
in Table 2. Each classifier had four possible outputs:

• Correctly Classified – 2.5-second rhythm interval was classified correctly.
• Incorrectly Classified – 2.5-second rhythm interval was classified as a differ-

ent rhythm.
• Undetermined (no classification) – 2.5-second rhythm interval was not clas-

sified.
• Undetermined (two classifications) – 2.5-second rhythm interval was classi-

fied as two rhythms (It should be noted that no rhythm interval was classified
as more than two rhythms.)

Table 2. Intra-patient classifier accuracy

Patient
Correctly
Classified

Incorrectly
Classified

Undetermined
(No

classification)

Undetermined
(2 classifica-

tions)

Percent
Accuracy

1 41 1 2 6 82.0%
2 15 0 2 1 83.3%
3 37 3 8 5 69.8%
4 21 2 1 3 75.0%
5 44 5 3 6 75.8%
6 51 1 5 8 78.5%

3.3 Inter-patient Classification

All 271 data segments from the six patients were combined and classified. The train-
ing data was learned with 100% accuracy within approximately 30 epochs. Leave-
one-out cross-validation was performed. The accuracy of classifying the 271 rhythm
intervals was improved compared to the intra-patient classification accuracy. The
classification accuracy for the 271 intervals was 83.0%, with the following break-
down of classification:
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• 225 were correctly classified.
• 12 were incorrectly classified.
• 11 were undetermined due to no classification.
• 23 were undetermined due to two or more classifications (only one interval

was classified as three separate rhythms).

The confusion matrix for the proposed method is given in Table 3. Recall because of
the structure of the proposed classifier, a data interval may be under (no classifica-
tion) or over (two or more classifications) classified, hence the total classifications in
Table 3 is not 271.

Table 3. Confusion matrix for phase space classification method

Classified As Valid
SR MVT PVT VF Classification Accuracy

SR 117 1 7 6 109 87.9%
MVT 1 47 5 0 42 84.0%
PVT 3 4 45 2 39 76.5%
VF 2 0 6 38 35 76.1%

3.4 Complexity Measure Inter-patient Classification

Using the complexity measure algorithm from [20], the complexity measure for each
interval was calculated. The distributions of the measures for the different rhythms
are shown in Figure 5. It can be seen in the graph that unlike Zhang’s training results
there is no distinct separation between complexity measures of the different rhythms;
nor were the values attained using this data within the same ranges as those deter-
mined by Zhang. The results are extremely poor as seen by the accuracies given in
Table 4.

Table 4. Confusion matrix for complexity measure classification

Classified As
SR MVT PVT VF Accuracy

SR 116 8 0 0 93.5%
MVT 50 0 0 0 0%
PVT 51 0 0 0 0%
VF 38 8 0 0 0%
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Fig. 6. Complexity measure distribution for the all four rhythm types

3.5 Heart Rate Inter-patient Classification

Classification using the heart rate had an overall accuracy of 62%. Misclassifications
occurred in all rhythm intervals. The MVT intervals had the worst accuracy. The
classification using heart rate can be seen in Table 5.

Table 5. Confusion matrix for heart rate classification

Classified As
SR MVT PVT VF Accuracy

SR 83 38 3 0 66.9%
MVT 0 11 20 19 22.0%
PVT 0 0 40 11 78.4%
VF 0 1 1 44 95.6%

4 Discussion

Ideally, an implantable antitachycardia device should be capable of several modes of
therapy including antitachycardia pacing, low-energy cardioversion, and high-energy
defibrillation [21-23]. Patients requiring these types of therapy often experience more
than one rhythm type. These different arrhythmias may require different therapies.
However, for the several modes of therapy to be available in one device, detection
algorithms must be able to accurately differentiate among various arrhythmias. The
results from this preliminary study are encouraging for developing accurate detection
algorithms among the various ventricular tachyarrhythmias. The ability to accurately
classify rhythms experienced by individual patients more than 75% of the time is in
close agreement with the classification of trained observers. The classification accu-
racy across all patients was better for the automated scheme than for the original clas-
sification by trained observers. The classification performed using the complexity
measures of the rhythms was extremely poor. It is obvious that Zhang’s threshold
values are not generalizable. Even if new threshold values were determined for our
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data set, their classification method would perform poorly as can be seen in Fig. 6 by
the strong overlapping of the classes.

Using the reconstructed phase space to classify out-of-sample ECG recordings per-
formed better than the classification using the heart rate alone. This is due to several
reasons. The first and foremost was part of the new algorithm’s advantages is the abil-
ity to classify ECG rhythms in only 2.5 seconds. Most ICDs require 10 seconds to
classify a tachyarrhythmia. Many of the commercial detection algorithms also allow
the medical provider to determine templates for the patient’s SR. As these were out-
of-sample intervals no templates could be generated. Thus the detection of heartbeats
ranged drastically from one interval to the next. Secondly, as stated previously, the
morphology seen in an ECG recording is a function of the healthiness of the heart.
And as each of these rhythms was recorded during electrophysiological testing (EP)
and/or automatic implantable cardioverter/defribrillator (AICD) implantation, none of
these hearts can be considered extremely healthy. Thus individual rhythms greatly
vary from one patient to the next. For example during SR, one patient had T-waves
whose amplitudes were as large as the QRS. The T-waves were counted as a new
heartbeat, thus doubling the calculated heart rate. Finally, even though the data was
zero-meaned linear trends were not removed from the intervals, thus fewer beats were
counted.

Although the proposed method was accurate 83% of the time, if used in AICDs in its
current form, the misclassification of SR and MVT as VF could cause a patient to
receive an unnecessary defibrillation shock which has the possibility of being detri-
mental to the patient. Some of these false classifications were due to SR intervals in
which the maximum amplitude of the signal was not very large, thus the phase space
reconstruction of these non-fatal rhythms was very close to that of VF. Further im-
provement is still needed before these short intervals can be used in commercial ap-
plications, such as the development of multi-therapy implantable antitachycardia de-
vices. The high classification accuracy of the proposed method within a short period
of time reinforces the author’s conjecture that phase space is a valid starting point in
the classification of ventricular tachyarrhythmias. Other features will need to be
added to the proposed method to improve the classification accuracy for short inter-
vals of data. Further investigations for defining the rhythm attractors will incorporate
time-delay and multi-dimensional phase spaces.

Future research into the identification of ventricular tachyarrhythmias may unveil
electrophysiological mechanisms responsible for the onset and termination of fibrilla-
tory rhythms. We hypothesize that the patterns of the quasi-periodic [24] attractors of
heart rhythms change immediately prior to (within a 10-minute time period) the onset
of a serious ventricular arrhythmia. Using these attractors, future research will focus
on the transitions from one phase space attractor to another. This may reveal how
changes in the attractor space correspond to heart rhythm changes, with the end goal
being able to predict the onset of VF, thus improving available therapy and preven-
tion.
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