Computing Association Rules Using Partial Totals

Frans Coenen, Graham Goulbourne, and Paul Leng

Department of Computer Science, The University of Liverpool
Chadwick Building, P.O. Box 147, Liverpool L69 3BX, England
{frans,graham g,phl}ecsc.liv.ac.uk

Abstract. The problem of extracting all association rules from within a binary
database is well-known. Existing methods may involve multiple passes of the
database, and cope badly with densely- packed database records because of the
combinatorial explosion in the number of sets of attributes for which incidence-
counts must be computed. We describe here a class of methods we have introduced
that begin by using a single database pass to perform a partial computation of the
totals required, storing these in the form of a set enumeration tree, which is created
in time linear to the size of the database. Algorithms for using this structure to
complete the count summations are discussed, and a method is described, derived
from the well-known Apriori algorithm. Results are presented demonstrating the
performance advantage to be gained from the use of this approach.

Keywords: Association Rules, Set Enumeration Tree, Data Structures.

1 Introduction

A well-established approach to Knowledge Discovery in Databases (KDD) involves
the identification of association rules |2]] within a database. An association rule is a
probabilistic relationship, of the form A— B, between sets of database attributes, which
is inferred empirically from examination of records in the database. In the simplest case,
the attributes are boolean, and the database takes the form of a set of records each of which
reports the presence or absence of each of the attributes in that record. The paradigmatic
example is in supermarket shopping-basket analysis. In this case, each record in the
database is a representation of a single shopping transaction, recording the set of all
items purchased in that transaction. The discovery of an association rule, PQR— XY,
for example, is equivalent to an assertion that “shoppers who purchase items P, Q and R
are also likely to purchase items X and Y at the same time”. This kind of relationship is
potentially of considerable interest for marketing and planning purposes.

More generally, assume a set I of n boolean attributes, {a1, - - -, a,, }. and a database
table each record of which contains some subset of these attributes, which may equiva-
lently be recorded as a n-bit vector reporting the presence or absence of each attribute.
An association rule R is of the form A— B, where A, B are disjoint subsets of the at-
tribute set 1. The support for the rule R is the number of database records which contain
AU B (often expressed as a proportion of the total number of records). The confidence
in the rule R is the ratio of the support for R to the support for its antecedent, A. A rule
is described as “frequent” or “interesting”, if it exceeds some defined levels of support
and confidence. The fundamental problem in association rule mining is the search for

L. De Raedt and A. Siebes (Eds.): PKDD 2001, LNAI 2168, pp. 5466, 2001.
(© Springer-Verlag Berlin Heidelberg 2001

Computing Association Rules Using Partial Totals 55

sets which exceed the support threshold: once these frequent sets have been identified
the confidence can be immediately computed.

In this paper we describe a class of methods for identifying frequent sets of attributes
within a database. For the databases in which we are interested, the number of attributes
is likely to be 500 or more, making examination of all subsets computationally infeasible.
Our methods use a single pass of the database to perform a partial summation of support
totals, with time and space requirements that are linear to the number of database records.
The partial counts are stored in a set-enumeration tree structure (the ‘P-free’) which
facilitates efficient completion of the final totals required. We describe an algorithm for
performing this computation, using a second tree structure (the 7T-tree’) to store the
support-counts. Results are presented which illustrate the performance gain achieved by
this approach.

2 Background

The central problem in deriving association rules is the exponential time- and space-
complexity of the task of computing support counts for all 2" subsets of the attribute
set 1. Hence, practicable algorithms in general attempt to reduce the search space by
computing support-counts only for those subsets which are identified as potentially
interesting. The best-known algorithm, “Apriori” [3]], does this by repeated passes of the
database, successively computing support-counts for single attributes, pairs, triples, and
so on. Since any set of attributes can be “interesting” only if all its subsets also reach
the required support threshold, the candidate set of sets of attributes is pruned on each
pass to eliminate those that do not satisfy this requirement. Other algorithms, AIS [2]]
and SETM (9], have the same general form but differ in the way the candidate sets are
derived.

Two aspects of the performance of these algorithms are of concern: the number of
passes of the database that are required, which will in general be one greater than the
number of attributes in the largest interesting set, and the size of the candidate sets which
may be generated, especially in the early cycles of the algorithm. The number of passes
may be reduced to 2 by strategies which begin by examining subsets of the database
[L1], or by sampling the database to estimate the likely candidate set [12]. The drawback
of these methods is that the candidate set derived is necessarily a superset of the actual
set of interesting sets, so again the search space may become very large, especially with
densely packed database records. Large candidate-set sizes create a problem both in
their storage requirement and in the computation required as each database record is
examined. The implementation described for the Apriori algorithm stores the candidate
setin a hash-tree, which is searched for each database record in turn to identify candidates
that are subsets of the set of attributes included in the record being considered.

The computation involved in dealing with large candidate sets has led researchers to
look for methods which seek to identify maximal interesting sets without first examining
all their smaller subsets. Zaki et al [[13] do this by partitioning the search space into
clusters of associated attributes; however, this approach breaks down if the database
is too densely-populated for such clusters to be apparent. Bayardo’s [4] Max-Miner
algorithm also searches for maximal sets, using Rymon’s set enumeration framework

56 F. Coenen, G. Goulbourne, and P. Leng

[LO] to order the search space as a tree. Max-Miner reduces the search space by pruning
the tree to eliminate both supersets of infrequent sets and subsets of frequent sets. In
a development from Max-Miner, the Dense-Miner algorithm [5] imposes additional
constraints on the rules being sought to reduce further the search space in these cases.
These algorithms cope better with dense datasets than the other algorithms described, but
again require multiple database passes. For databases which can be completely contained
in main memory, the DepthProject algorithm of [1] also makes use of a set- enumeration
structure. In this case the tree is used to store frequent sets that are generated in depth-first
order via recursive projections of the database. However, because of the combinatorial
explosion in the number of candidates which must be considered, and/or the cost of
repeated access to the database, no existing algorithm copes fully with large databases
of densely-packed records.

In the method we describe here, we also make use of Rymon’s set enumeration tree,
to store interim support- counts in a form that facilitates completion of the computa-
tion required. The approach is novel but generic in that it can be used as a basis for
implementing improved variants of many existing algorithms.

3 Partial Support and the P-Tree

The most computationally expensive part of Apriori and related algorithms is the iden-
tification of subsets of a database record that are members of the candidate set being
considered; this is especially so for records that include a large number of attributes.
We avoid this, at least initially, by at first counting only sets occurring in the database,
without considering subsets.

Let 7 be a subset of the set I (where I is the set of n attributes represented by the
database). We define P;, the partial support for the set 4, to be the number of records
whose contents are identical with the set ¢. Then T}, the fotal support for the set ¢, can
be determined as:

T,=% P (V24

For a database of m records, the partial supports can, of course, be counted simply in
a single database pass, to produce m/ partial totals, for some m’ < m. We use Rymon’s
set enumeration framework [10] to store these counts in a tree; Figure 1 illustrates
this for I = {A, B, C, D}. To avoid the potential exponential scale of this, the tree
is built dynamically as the database is scanned so as to include only those nodes that
represent sets actually present as records in the database, plus some additional nodes
created to maintain tree structure when necessary. The size of this tree, and the cost of
its construction are linearly related to m rather than 2”.

Taking advantage of the structural relationships between sets of attributes apparent
from the tree, we also use the construction phase to begin the computation of total
supports. As each set is located within the tree during the course of the database pass, it
is computationally inexpensive to augment interim support-counts, @); stored for subsets
which precede it in the tree ordering; thus:

Q; = Z P, (¥j,7 21, j follows iin lexicographic order)

Computing Association Rules Using Partial Totals 57

Fig. 1. Tree storage of subsets of {A, B, C, D}

It then becomes possible to compute total support using the equation:
T, =Q; + Z P; (¥4,5 Di, jprecedes i in lexicographic order)

The numbers associated with the nodes of Fig. 1 are the interim counts which would
be stored in the tree arising from a database the records of which comprise exactly one
instance of each of the 16 possible sets of attributes; thus, for example, Q(BC) = 2,
derived from one instance of BC and one of BC'D. Then:

T(BC) = Q(BC) + P(ABC) + P(ABCD) = Q(BC) + Q(ABC)

We use the term P-free to refer to this incomplete set- enumeration tree of interim
support-counts. An algorithm for building the P-tree, counting the interim totals, is
described in detail in [7]. Because the P-tree contains all the relevant data stored in
the original database, albeit in a different form, we can in principle apply versions of
almost any existing algorithm to complete the summation of total supports. Use of the P-
tree as a surrogate for the original database, however, offers three potential advantages.
Firstly, when n is small (2" < m), then traversing the tree to examine each node will be
significantly faster than scanning the whole database. Secondly, even for large n, if the
database contains a high degree of duplication (m’ < m) then using the tree will again
be significantly faster than a full database pass, especially if the duplicated records are
densely-populated with attributes. Finally, and most generally, the computation required
in each cycle of the algorithm is greatly reduced because of the partial summation
already carried out in constructing the tree. For example, in the second pass of Apriori
(considering pairs of attributes), a record containing r attributes may require the counts
for each of its (r — 1)/2 subset-pairs to be incremented. When examining a node of
the P-tree, conversely, it is necessary only to consider only those subsets not already
covered by a parent node, which in the best case will be only » — 1 subsets.

To illustrate this, consider the node ABCD in the tree of Fig. 1. The partial total
for ABC'D has already been included in the interim total for ABC, and this will be
added to the final totals for the subsets of A BC when the latter node is examined. Thus,
when examining the node ABC D, we need only consider those subsets not covered by
its parent, i.e. those including the attribute D. The advantage gained from this will be
greater, of course, the greater the number of attributes in the set being considered.

A rather similar structure to our P-free has been described independently by [8&]]. This
structure, the FP-tree, has a different form but quite similar properties to the P-tree, but
is built in two database passes, the first of which eliminates attributes that fail to reach

58 F. Coenen, G. Goulbourne, and P. Leng

the support threshold, and orders the others by frequency of occurrence. Each node in
the F'P-tree stores a single attribute, so that each path in the tree represents and counts
one or more records in the database. The F' P-tree also includes more structural infor-
mation, including all the nodes representing any one attribute being linked into a list.
This structure facilitates the implementation of an algorithm, “FP-growth”, which suc-
cessively generates subtrees from the F'P-tree corresponding to each frequent attribute,
to represent all sets in which the attribute is associated with its predecessors in the tree
ordering. Recursive application of the algorithm generates all frequent sets. The two
structures, the F'P-tree and our P-tree, which have been developed independently and
contemporaneously, are sufficiently similar to merit a detailed comparison, which we
discuss in Sect. 5.

4 Computing Total Supports

The construction of the P-tree has essentially performed, in a single pass, areorganisation
of the relevant data into a structured set of counts of sets of attributes which appear as
distinct records in the database. For any candidate set T of subsets of I, the calculation of
total supports can be completed by walking this tree, adding interim supports as required
according to the formulae above.

We can also take advantage of the structure of the P-tree to organise the computation
of total supports efficiently, taking advantage of the fact that the counts for each set in
the P-tree already incorporate contributions from their successor-supersets. Figure 2
illustrates the dual of Fig. 1, in which each subtree includes only supersets of its root
node which contain an attribute that precedes all those of the root node. We will call this
the T'-tree, representing the target sets for which the total support is to be calculated,
as opposed to the interim-support P-tree of Fig. 1. Observe that for any node ¢ in the
T-tree, all the subsets of ¢ which include an attribute 7 will be located in that segment of
the tree found between node ¢ and node ¢ in the tree ordering. This allows us to use the
T- tree as a structure to effect an implementation of an algorithm to sum total supports:

Algorithm TFP (Compute Total- from Partial- supports)
for each node j in P-tree do
begin k = j - parent (j);
1 = first attribute in k;
starting at node i of T-tree do
begin if ¢ C j then add Q; to T5;
if 7 = 5 then exit
else recurse to child node;
proceed to sibling node;
end
end

To illustrate the application of the algorithm, consider the node AC'D in the tree
of Fig. 1. TFP first obtains the difference of this node from its parent, AC, i.e. D, and
begins traversing the T-tree at node D. From this point the count associated with AC' D

Computing Association Rules Using Partial Totals 59

Fig. 2. Tree with predecessor-subtrees

will be added to all nodes encountered that are subsets of ACD, i.e. D, AD, CD and
ACD, the traversal terminating when the node AC D is reached. Note that the count for
the node B D which is not a subset of AC'D will not be updated, nor will its subtree be
traversed.

Of course, to construct the entire T'-tree would imply an exponential storage require-
ment. In any practical method, however, it is only necessary to create that subset of the
tree corresponding to the current candidate set being considered. Thus, for example, a
version of the Apriori algorithm using these structures would consider candidates which
are singletons, pairs of attributes, triples, etc., in successive passes. This algorithm, which
we will call Apriori-TFP, has the following form:

1. Build level K in the T-tree.

2. “Walk” the P-tree, applying algorithm TFP to add interim supports associated with

individual P-tree nodes to the level K nodes established in (1) .

Remove any level K T-tree nodes that do not have an adequate level of support.

4. Repeatsteps (1), (2) and (3); until alevel K is reached where no nodes are adequately
supported.

»

The algorithm begins by constructing the top level of the T-tree, containing all the
singleton subsets, i.e. the single attributes in I. A first pass of algorithm TFP then counts
supports for each of these in a single traversal of the P-tree. Note again that identification
of the relevant nodes in the T-tree is trivial and efficient, as these will be located in a
(usually short) segment of the level-1 list. In practice, it is more efficient to implement
level 1 of the T'-tree as a simple array of attribute-counts, which can be processed more
quickly than is the case for a list structure. A similar optimisation can be carried into
level 2, replacing each branch of the tree by an array, and again this is likely to be more
efficient when most of the level 2 nodes remain in the tree.

Following completion of the first pass, the level 1 T-tree is pruned to remove all
nodes that fail to reach the required support threshold, and the second level is generated,
adding new nodes only if their subsets are contained in the tree built so far, i.e. have been
found to have the necessary threshold of support. The new level of the tree forms the
candidate set for the next pass of the algorithm TFP. The complete algorithm is described
formally in Table 1 (Part 1) and Table 2 (Part 2). This uses a function, endDigits, that
takes two arguments P and N (where NV is the current level) and returns a set comprising
the last IV attributes in the set P; thus endDigits(ABC,2) = BC. The significance of
this is that BC' is the last subset of ABC at level 2 that need be considered.

60 F. Coenen, G. Goulbourne, and P. Leng

Table 1. Total Support Algorithm (Part 1)

VP € Ptree where (numAttributes(P) > requiredLevel)
P' = P\ Pparent
VTi; (nodes at level 1)
loop while P # null
ifTv; <P j++
ifTh,; =P
if (requiredLevel = 1) Tsup = Tsup + Psup
else Part 2
P’ = null
if (Tl,j C P/)
if (requiredLevel = 1) Tsup = Toup + Psup
else Part 2
P’ = P'\ firstAttribute(P') - j + +

Table 2. Total Support Algorithm (Part 2)

P" = endDigits(P, currentLevel)
loop while T;,; # null
if Tr; <P
if(Ti; C P)
if currentLevel = requiredLevel Tsup = Tsup + Psup
else recursivelycall Part 2 commencing with Tiy 1
Jj++
if T;,; = P"
if currentLevel = requiredLevel Tsyup = Toup + Psup
else recursivelycall Part 2 commencing with Ti4 4 1
stop
if Ti; > P"
stop

5 Results

To evaluate the algorithms we have described, we have compared their performance with
that for our implementations of two published methods: the original Apriori algorithm
(founded on a hash tree data structure), and the FP- growth algorithm described in [§].
In both cases, the comparisons are based on our own implementations of the algorithms,
which follow as closely as we can judge the published descriptions. All the implementa-

Computing Association Rules Using Partial Totals 61

tions, including those for our own algorithms, are experimental prototypes, unoptimised
low-performance Java programs.

The first set of experiments illustrate the performance characteristics involved in the
creation of the P-tree. Figure 3 shows the time to build the P-tree, for databases of
200,000 records with varying characteristics. The graphs of storage requirements also
have exactly the same pattern. The three cases illustrated represent synthetic databases
constructed using the QUEST generator described in [3]]. This uses parameters 7', which
defines the average number of attributes found in a record, and I, the average size of the
maximal supported set. Higher values of 7" and I in relation to the number of attributes
N correspond to a more densely-populated database. These results show that the cost of
building the P-tree is almost independent of NV, the number of attributes. As is the case
for all association-rule algorithms, the cost of the P-tree is greater for more densely-
populated data, but in this case the scaling appears to be linear.

Figure 4 examines the P-tree storage requirement for databases of 500 attributes,
with the same sets of parameters, as the number of database records is increased. This
shows, as predicted, that the size of the tree is linearly related to the database size. Again,
this is also the case for the construction time. The actual performance figures for the
P- tree construction could easily be improved from a more efficient implementation,
and it would also be possible and probably worthwhile to use this first pass to compute
total support counts for the single attributes. However, the construction of the P-tree
is essentially a restructuring of the database, the effect of which will be realised in all
subsequent data mining experiments.

In Table 3 we examine the cost of building the P-tree in comparison with that for
the F'P-tree of [8]. The figures tabulated are for two different datasets:

1. quest.T25.110.N1K.D10K: A synthetic data set, also used in [8], generated using
the Quest generator (N=1000 attributes, D=10000 records).

2. fleet.N194.D9000: A genuine data set, not in the public domain, provided by a UK
insurance company. Note that this set is much denser than quest. T25.110.N1K.D10K

Time {mins)

13 3 N ’ — Ti4.nz

a) * ' "TiE.I@

T T T T
e yals) 200 400 00
Humber of Calumns (attributas)

Fig. 3. Graph showing effort (time) to generate P-tree for data sets with number of rows fixed at
200000

62 F. Coenen, G. Goulbourne, and P. Leng

Storage (Ml
i}

“T124012

20

=l "TIEE

*T8.4

T T T T
Ll 200 J00 400 S00
Hurnber af Rasws (10005)

Fig.4. Graph showing P-tree storage requirements for data sets with number of columns fixed at
500

Table 3. P-tree and FP-tree generation characteristics

quest.T25.110.N1K.D10K fleet. N194.D9000

Storage (Bytes)|Time (Mins)||Storage (Bytes)|Time (Mins)
P-tree 1,020,690 0.65 582,196 0.36
FP-tree (Sup 5%) 1,566,838 343 767,062 1.24
FP-tree (Sup 4%) 2,283,360 5.53 912,918 1.39
FP-tree (Sup 3%) 3,028,082 9.36 1,334,146 2.04
FP-tree (Sup 2%) 3,974,482 20.00 1,704,990 3.28
FP-tree (Sup 1%) 4,567,480 34.83 1,754,990 3.35

With respect to Table 3 it should be noted that the procedure for building the F'P-
tree eliminates all single attributes that fail to reach the support threshold, so figures
for a range of support thresholds are tabulated against the (constant) characteristics of
the P-tree. As can be seen, the P-tree is a significantly more compact structure, and
its construction time lower than that of the F'P-tree. The greater size of the F' P-tree
arises from the greater number of nodes it creates, and the additional links required by
the FP-growth algorithm. The F'P-tree stores each attribute of a record as a separate
node, so that, for example, two records ABCDE and ABC XY, with a common prefix
ABC, would require in all 7 nodes. The P-tree, conversely, would create only 3 nodes:
a parent ABC, and child nodes DFE and XY. Each node in the F'P-tree also requires
two additional links not included in the P-tree. One, the “node-link”, connects all nodes
representing the same attribute, and the other, which links a node to its parent, appears
to be necessary to effect an implementation of FP-growth. The greater construction time
for the F'P-tree is unsurprising, given its more complex structure and that it requires
two passes of the source data. In these trials, this data is main-memory resident: in the
case of a dataset too large for this to be possible, the cost of the additional pass would
of course be much greater.

Finally, to evaluate the performance of the method for computing final support-
counts, we have compared the Apriori-TFP algorithm we have described with our im-
plementations of the original Apriori (founded on a hash tree data structure) and of

Computing Association Rules Using Partial Totals 63

Time (mins)
|
3z @
16
=
B
o
i -
4 | .2
<
e - L]
i -
. r (1
B o
u
—a" it
il et =
[g —
n o -
—
il i
] T T T T T T T T T T T T T T
5.0 4.5 4.0 2.0 5 1.0 05

35 20 25
support Threshold

Fig. 5. Graph showing processing time to mine (1) the P-tree, (2) the FP-tree and (3) to perform
the same operation using a traditional Apriori algorithm using quest.T25.110.N1K.D10K

Time {minsh

e
2 4 Rl
16 _
. "

B | i ®
4 .
4 o
a :@:
=1 "B g

1 =
R
p— =
gt
+ F

ot g

g
0

T T T 1 L T T T T 1 =

S50 45 4.0 35 3.0 25 20 15 1.0 05

Sup"nle't Threshald

Fig. 6. Graph showing processing time to mine (1) the P-tree, (2) the FP-tree and (3) to perform
the same operation using a traditional Apriori algorithm using fleet.N194.D9000

FP-growth. The results are presented in Fig. 5, for quest. T25.110.N1K.D10K and Fig. 6,
for fleet.N194.D9000, In all cases, to give the fairest basis for comparison, we have
used data which is main-memory resident throughout. The performance time presented
with respect to Apriori-TFP and FP-growth do not include the time to produce the P-
tree or FP-tree respectively.

As we would expect, Apriori-TFP strongly outperforms our implementation of Apri-
ori. This improvement arises from a combination of two factors. The first, as described
above, is the lower number of support-count updates that will be required when exam-
ining a P-tree node, as opposed to the number required in Apriori from examination of
the records from which the node is made up. This gain will be greatest when there are
clusters of records including significant numbers of shared attributes (as we might hope
to find when mining potentially interesting data), and, especially, if there are significant
numbers of duplicated records. Secondly, the effect is compounded by the more efficient
localisation of candidates obtained by using the T-tree for the TFP algorithm, as opposed
to the hash-tree used by Apriori. The cost of accessing the hash-tree to locate candidates

64 F. Coenen, G. Goulbourne, and P. Leng

for updating increases rapidly as the candidate set increases in size, as is the case for
lower support thresholds, and is greatest when examining a record which includes many
attributes and hence many potential candidates for updating.

Apriori-TFP also outperforms our implementation of FP- growth using quest.T25.
[10.N1K.D10K although the difference here is much less. We believe that the perfor-
mance gain here is a consequence of the cost of the recursive construction of successive
conditional FP-trees, which, in our straightforward implemention, is much slower than
the simple iterative building of the T'-tree. In the case of the fleet. N194.D9000 data set
similar performance times for both Apriori-TFP and FP growth are recorded with one
outperforming the other on some occasions and vice versa. However, if the P-tree/FP-tree
generation times are included Apriori- TFP clearly outperforms FP-growth.

Althoughit is possible that some of the advantage is an artefact of our implemen-
tations, the results appear to show that the simpler P-tree structure offers at least as
good performance as the more complex F' P-tree. Moreover, the above experiments use
memory-resident data only; we believe that the additional structural links in the FP-tree,
and the need for repeated access to generate subtrees, will create problems for efficient
implementation in cases for which the tree is too large to hold in main memory. For
the simpler P-tree structure, conversely, it is easy to describe an efficient construction
process which will build separate trees for manageable segments of the database, prior
to a final merging into a single tree. Nor is it necessary, in general, for the P-tree to
be retained in main memory throughout the calculation of final support totals. The only
structural information necessarily retained is the relationship of a node to its parent. For
example, if a node representing the set ABDF'G is present in the tree as a child of the
node ABD, all the relevant information can be recorded by a node representation of
the form ABD.F'G. In this form, the “tree” can in fact be stored finally as a simple
array in any convenient order, depending on the needs of the algorithm to compute the
final support totals. In the case of the Apriori-TFP algorithm, the tree/array is processed
element-by-element in any order, causing no problems even when it is necessary to hold
it in secondary memory.

6 Conclusions

We have presented here an algorithm for computing support counts using as a starting
point an initial, incomplete computation stored as a set- enumeration tree. Although
the actual algorithm described here to compute the final totals is based on the Apriori
algorithm, the method itself is generic, in that, once the P-tree has been created, a variety
of methods may be applied to complete the summation. Many of these methods, like the
one we have illustrated, will be able to take advantage of the partial computation already
carried out in the initial database pass to reduce the cost of further multiple passes.
Note, however, that the advantage gained from this partial computation is not equally
distributed throughout the set of candidates. For candidates early in the lexicographic
order, most of the support calculation is completed during the construction of the P-tree;
for example, for the attributes of Fig. 1, support for the sets A, AB, ABC and ABC'D
will be counted totally in this first stage of the summation. This observation allows us
to consider methods which maximise the benefit from this by a suitable ordering of the

Computing Association Rules Using Partial Totals 65

attribute set. This is, of course, the heuristic used by [8], and also, in various ways, by
[4], [6] and [1].

We could also increase the proportion of the summation which is completed during
the initial scan of the database by a partitioning of the P-tree. For example, it would
be possible to separate the tree of Fig. 1 into four subtrees, rooted at the nodes A, B,
C' and D, and for the first pass to accumulate interim supports within each of these
subtrees independently. In this case, a record containing the set ABD, for example,
would increment the support-counts for AB D within the A-tree, BD within the B-tree,
and D within the (single-node) D-tree. Again, the effect of this is similar to that for
a set of conditional FP-trees produced by FP-growth. The advantage offered is that is
provides a means of reducing the size of trees required for processing. The size of the
complete subtree corresponding to an attribute a; that is in position 7 in the tree ordering
is 2"~%, However, the P-tree construction method we use will produce an incomplete
subtree, the size of which will be of order m’, where m’ < T, ., the number of records
in the database which contain a; (again, reduced by the existence of duplicates). Thus,
the storage requirement for each subtree is less than or equal to min {2"~%, T, }. The
requirement for any single subtree can be minimised by ordering the attributes in reverse
order of their frequency, so that the most common attributes are clustered at the high-
order end of the tree structure.

Partitioning the tree in this way would allow us (in one pass) to organise the data
into sets each of which can be processed independently and may be small enough to
be retained in central memory. At the high-order end of the organisation, i.e. for values
of i close to n, the 27 ~* limit becomes computable. Thus, for large i, it may be more
efficient to store partial supports in a complete array of subset-counts, and to use an
exhaustive algorithm to compute total supports efficiently. Conversely, for smaller ¢,
the conservative P-tree storage method, and an algorithm such as Apriori-TFP can be
applied. We are presently investigating this and other heuristics to produce effective
hybrid algorithms of this kind.

References

1. Agarwal, R., Aggarwal, C. and Prasad, V. Depth First Generation of Long Patterns. Proc ACM
KDD 2000 Conference, Boston, 108-118, 2000.

2. Agrawal, R. Imielinski, T. Swami, A. Mining Association Rules Between Sets of Items in
Large Databases. SIGMOD-93, 207-216. May 1993.

3. Agrawal, R. and Srikant, R. Fast Algorithms for Mining Association Rules. Proc 20th VLDB
Conference, Santiago, 487-499. 1994

4. Bayardo, R.J. Efficiently Mining Long Patterns from Databases. Proc ACM-SIGMOD Int
Conf on Management of Data, 85-93, 1998

5. Bayardo, R.J., Agrawal, R. and Gunopolos, D. Constraint-based rule mining in large, dense
databases. Proc 15th Int Conf on Data Engineering, 1999

6. Brin, S., Motwani. R., Ullman, J.D. and Tsur, S. Dynamic itemset counting and implication
rules for market basket data. Proc ACM SIGMOD Conference, 255-256, 1997

7. Goulbourne, G., Coenen, F. and Leng, P. Algorithms for Computing Association Rules using
a Partial-Support Tree. J. Knowledge-Based Systems 13 (2000), 141-149. (also Proc ES’99.)

8. Han, J., Pei, J. and Yin, Y. Mining Frequent Patterns without Candidate Generation. Proc
ACM SIGMOD 2000 Conference, 1-12, 2000.

66

10.

11.

12.

13.

F. Coenen, G. Goulbourne, and P. Leng

Houtsma, M. and Swami, A. Set-oriented mining of association rules. Research Report RJ
9567, IBM Almaden Research Centre, San Jose, October 1993.

Rymon, R. Search Through Systematic Set Enumeration. Proc. 3rd Int’l Conf. on Principles
of Knowledge Representation and Reasoning, 1992, 539-550.

Savasere, A., Omiecinski, E. and Navathe, S. An efficient algorithm for mining association
rules in large databases. Proc 21st VLDB Conference, Zurich, 432-444. 1995.

Toivonen, H. Sampling large databases for association rules. Proc 22nd VLDB Conference,
134-145. Bombay, 1996.

Zaki, M.J., Parthasarathy, S. Ogihara, M. and Li, W. New Algorithms for fast discovery of as-
sociation rules. Technical report 651, University of Rochester, Computer Science Department,
New York. July 1997.

	Introduction
	Background
	Partial Support and the P-Tree
	Computing Total Supports
	Results
	Conclusions

