
Backpropagation in Decision Trees for
Regression

Victor Medina-Chico1, Alberto Suárez1, and James F. Lutsko2

1 Escuela Técnica Superior de Informática
Universidad Autónoma de Madrid

Ciudad Universitaria de Cantoblanco
28049 Madrid, Spain

2 Center for Nonlinear Phenomena and Complex Systems
Université Libre de Bruxelles

C.P. 231 Campus Plaine
B-1050 Brussels, Belgium

Abstract. A global optimization algorithm is designed to find the pa-
rameters of a CART regression tree extended with linear predictors at
its leaves. In order to render the optimization mathematically feasible,
the internal decisions of the CART tree are made continuous. This is
accomplished by the replacement of the crisp decisions at the internal
nodes of the tree with soft ones. The algorithm then adjusts the param-
eters of the tree in a manner similar to the backpropagation algorithm
in multilayer perceptrons. With this procedure it is possible to generate
regression trees optimized with a global cost function, which give a con-
tinuous representation of the unknown function, and whose architecture
is automatically fixed by the data. The integration in one decision system
of complementary features of symbolic and connectionist methods leads
to improvements in prediction efficiency in both synthetic and real-world
regression problems.

1 Introduction

The use of decision trees in regression problems has been limited by their reduced
expressive capacity. For instance, CART regression trees [1] yield a rather coarse
approximation of the unknown real-valued function in terms of patches of con-
stant value. The origin of this piecewise representation is the divide-and-conquer
strategy used in the generation of the decision tree: The original regression prob-
lem is decomposed into a series of simpler problems by a recursive partitioning
procedure that divides the attribute space into disjoint regions. Each of these
divisions is generated by a Boolean test on the attributes. The parameters of the
splits are found by minimizing a cost function that measures the local predic-
tion error. This implies that the tree is an approximation that presents finite-size
jump discontinuities at the decision boundaries. Furthermore the greedy strategy
used in the tree generation implies that the final predictor need not be globally
optimal. There are also statistical implications in subdividing the initial space

L. De Raedt and P. Flach (Eds.): ECML 2001, LNAI 2167, pp. 348–359, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Backpropagation in Decision Trees for Regression 349

into smaller regions. Every time a split is made, the problem generally becomes
simpler to solve, but the number of examples available for the learning is also re-
duced. In more precise terms, dividing the data can have favorable consequences
for the bias of the predictor, but it generally increases its variance. The decom-
position of the prediction error in terms of bias and variance is a well-known
decomposition in regression [11]. The bias term may be understood as the error
that remains even if we had an infinite number of observations while the variance
term is a measure of the fluctuations due to the finite number of observations.

It is thus desirable to design a method to construct decision trees that are
optimized with a global cost function while retaining the advantages of a sym-
bolic knowledge representation. In this work, a backpropagation algorithm is
presented that adjusts the parameters of a decision tree whose architecture is
selected by a standard tree generation algorithm [21]. This algorithm is similar
to the backpropagation algorithm in multilayer perceptrons. It solves the credit
assignment problem by propagating the errors from the leaves of the tree up to
its root, following an inverse path to that used in prediction. The advantage of
the resulting predictor is that its architecture is not fixed beforehand, but is gen-
erated automatically by the data itself. The regression tree obtained is subject
to the limitations of the base tree generation algorithm in finding an architec-
ture as close as possible to the optimal one, and of the numerical optimization
procedure, which may get trapped in a local minimum of the cost function.

To implement this backpropagation algorithm on the architecture of the tree
needs to be reinterpreted in terms of membership functions. A classical decision
tree, such as CART [1] or C4.5 [18] is characterized by Boolean membership
functions. A fuzzy decision tree incorporates continuous membership functions
to allow the possibility of partial memberships in the nodes of the tree. This
reformulation makes it possible to employ analytic tools to adjust the tree pa-
rameters to optimize a global cost function. The starting point for the generation
of fuzzy regression trees is a CART tree [1] extended with linear models at each
of the leaves of the tree [22], instead of the traditional constant models used in
CART. These linear models at each of the leaves have the effect of extending
the expressive capabilities of the traditional CART tree and of reducing its size.
Once the crisp tree is constructed, the Boolean splits are replaced by continuous
sigmoidal splits that can be continuously tuned. In a manner similar to back-
propagation in neural networks, the learning process involves the propagation of
the tree estimates from the leaves to the root node.

There are several advantages in this approach. The representation given by a
fuzzy regression tree is continuous and the parameters can be adjusted to opti-
mize a global error function. Instead of discarding data at every decision in the
tree, all training data is assigned to every node, although with different degrees
of membership. Since no single tree leaf is solely responsible for the prediction,
some of the model interpretability is lost. Nonetheless, the final estimator can be
thought of as a hierarchical mixture of experts [14]. The optimized model is not
just a smoothed version of a piecewise linear representation, and can significantly
differ form the original CART tree.



350 V. Medina-Chico, A. Suárez, and J.F. Lutsko

The organization of the paper is as follows: In Section 2, connections with
other approaches such as M5 [12], ensemble methods (bagging, boosting, PC -
perturb & combine) and HME (hierarchical mixtures of experts) are outlined.
In Section 3, the generation of crisp trees is reinterpreted in terms of member-
ship functions. This interpretation leads to the design of a global optimization
algorithm and to the formulation of the backpropagation algorithm for regres-
sion. The results of the experiments are presented in Section 4. Finally, Section
5 summarizes the results and conclusions of this work.

2 Relation to Previous Work

A decision tree with linear models at the leaves, M5, was proposed in Ref. [12].
In the M5 system, a fully developed regression tree giving a piecewise constant
representation of the objective function is pruned by replacing the subtree at-
tached to an inner node by a linear model whenever the latter outperforms the
subtree model. The linear models are artificially restricted to using only those
variables involved in the splits in the eliminated subtree. The final tree gives a
piecewise linear (i.e. discontinuous) representation. No attempt is made to select
the tree parameters by optimizing a global cost function.

Much of the current research on regression trees strives to overcome the
shortcomings and rigidity of piecewise representations. Divide-and-conquer al-
gorithms approach a complex task by dividing it into more elementary tasks
whose solutions can be combined to yield a solution to the original problem.
This leads to simple and elegant algorithms. However, one should be concerned
about the statistical consequences of dividing the input space, specially when
the training data available are limited. Dividing the data generally leads to an
increased variance because one has more hypotheses that fit the reduced number
of data points.

For unstable algorithms such as CART [1], C4.5 [18] or ID3 [19], a possible
solution is to to combine different realizations of the same predictor. These dif-
ferent realizations are obtained by perturbing the training set in various ways.
Examples are bagging [2], boosting [8], arcing [4] and output smearing [5]. All
of them need some amount of instability of the base learner to small changes in
the training set. The reason for this is that the predictors need to be different
to reduce the variance.

The performance of ensemble methods is often quite remarkable given their
simplicity. In fact, these algorithms are more immune to overfitting than one
would expect considering the large amount of parameters involved. In regression,
the performance of ensemble methods can be studied in terms of a decomposition
of the error in terms of bias and variance [3]. The combination of the base learners
leads to a reduction in the variance. In classification, the explanation is not so
clear since there is not a single decomposition in terms of bias and variance
[4], [15] or [16]. Besides, boosting has been argued to be more than a variance-
reducing device and an explanation in terms of the margin of classification has
also been proposed [20].



Backpropagation in Decision Trees for Regression 351

The main disadvantage of voting methods is their complexity. Because the
amount of parameters involved and because the final hypothesis is the average of
the hypotheses of the different predictors, the interpretation of a voting method
is not as straightforward as that of a single predictor. The computational costs
are also larger both in terms of memory and prediction speed.

The present work proposes to take advantage of combinations of different
models, as well, but from a radically different perspective. Whereas ensembles of
learners generally give similar weights to all the individual predictor, we propose
a weighted combination the predictions given by the different units that make
up a single learner. The starting point for our algorithm is a CART regression
tree, extended with linear models at the leaves. The unknown function is approx-
imated by the Piecewise Linear Model (PLM) encoded by the regression tree.
The weights for combining the linear models are computed by applying a suc-
cession of fuzzy splits that replace the Boolean splits in the internal nodes of the
CART tree. The resulting predictor can be thought of as a hierarchical mixture
of linear predictors [14] whose architecture is fixed by the training data itself.
The parameters of both the fuzzy splits and of the linear models are adjusted
by minimization of a global cost function.

3 Optimization of PLM Regression Trees

In order to design a procedure to optimize the parameters of the tree structure
with respect to a global cost function, one has to take into account the fact that
the decisions taken in its construction are formulated in terms of hard splits.
The global cost function for the tree can be written in terms of Boolean mem-
bership functions of the training examples in the leaf nodes [21]. These functions
are discontinuous step functions. Therefore, their parameters cannot be tuned
by standard analytical optimization routines, which require smoothness of the
function and its derivatives. The solution to this problem is to replace these
functions by continuous ones. This means that the decisions become smooth
and that a point may simultaneously belong to different leaves, thus bringing
fuzzy character into the tree structure. Following Suárez and Lutsko [21] we
review the construction of a crisp regression tree in terms of membership func-
tions. This reformulation allows the possibility of considering real-valued (fuzzy)
membership functions and renders the design of a global optimization algorithm
feasible. The introduction of the fuzzy character is made once the tree archi-
tecture is fixed. This is a procedure analogous to that used in the construction
of a neural network. It has the advantage that selection of the architecture is
an automatic process guided by the data itself and not by heuristics. There are
many different algorithms to generate decision trees [1,10,19] . In this paper the
base classifier is CART, designed by Breiman et al. [1].

The dataset from which the tree is induced consists of examples in the form
of pairs (xn, yn);n = 1, . . . , N , where xn = {xn1, xn2, . . . , xnD} is the vector
of attributes (also known as predictor or independent variables) and yn is the
dependent variable to be predicted. We assume that both the dependent variable



352 V. Medina-Chico, A. Suárez, and J.F. Lutsko

and the attributes are ordinal variables (regression). Nominal attributes can also
be handled by the decision tree. However, the possibility of fuzzifying nominal
splits is not considered.

Following the usual procedure, the dataset is partitioned into a training set,
with Ntrain examples, which is used to learn the model, and a statistically in-
dependent test set, with Ntest examples, which is used to evaluate the quality
of the generated model. The training set is used to build a tree (T) composed
of a collection of nodes (ti ∈ T ; i = 0, 1, 2...) arranged in a hierarchical manner.
The CART method is a top-down algorithm for the generation of a binary deci-
sion tree. The first node of a CART tree is the root node, t0. By definition, all
examples belong to this node. The tree is then constructed using a divide-and-
conquer strategy in which the attribute space is partitioned by several Boolean
tests into a set of disjoint subregions, in each of which the decision problem is
simpler. Each of the tests corresponds to an internal node of the decision tree.
This procedure can be repeated recursively until a stopping criterion is met.
The CART prescription is to generate a maximally developed tree and then to
perform cost-complexity pruning using 10-fold cross-validation.

In the original CART formulation, the prediction for the dependent variable
in each region is a constant value which is equal to the average of the dependent
variable in that region. A CART tree thus yields a piecewise constant model
for the unknown relation between the independent and dependent variables.
Piecewise Linear Model decision trees (PLM trees) differ from the original CART
trees in that in each of these disjoint regions, a local linear model for the data
is constructed [22]. This formulation allows for a more flexible representation
of the unknown function at each of the terminal nodes. The coefficients of the
attributes are then determined by minimizing the mean square error over the
training set. The predictions of the leaves (x) are linear models

ȳl(x) = βl0 + βl1x1 + . . . + βlDxD. (1)

The tendency to overfitting may be partially avoided by selecting which at-
tributes of the linear models at each of the leaf nodes have to remain. This is
achieved using an algorithm designed by Jennrich [13]. According to this algo-
rithm, a series of regressions is constructed, starting from a linear model that
includes all variables. The attributes are then added or removed from the lin-
ear model according to some statistically meaningful criteria. The PLM trees
generated are more flexible than traditional trees and are also smaller. The in-
creased complexity introduced when linear models are generated at the leaves is
balanced with the decrease of the number of subdivisions of the attribute space.

In a CART tree, each internal node corresponds to a test on the attributes
and splits the data into two disjoint regions by means of a question. This ques-
tion can be stated in terms of only one attribute (univariate splits) or of linear
combinations of several attributes (multivariate splits),

Qi = ci · x > ai, (2)



Backpropagation in Decision Trees for Regression 353

where the vector ci contains the coefficients that define a variable which is a
linear combination of the original variables. The parameter ai is the threshold
value of the split.

The parameters (ci, ai) are determined by the local optimization of a cost
function, which in regression is taken to be the mean square error over the
examples of the training set,

Rtrain =
1

Ntrain

Ntrain∑
n=1

(yn − ȳ(xn))2, (3)

where ȳ(xn) is the prediction of the tree for example xn.
The Boolean test (2) can be reinterpreted in terms of membership functions.

Each node ti is characterized by an absolute membership function µi(x) which
is equal to one for those examples that satisfy the conjunction of Boolean tests
leading to the node and zero otherwise. The relative degree of membership of
example x in node tiα, a child node of ti, is a Boolean function that is equal
to 1 if the example satisfies test on node ti (2) and equal to zero otherwise,
independent of the value of µi(x). For the tiL left child node of ti,

µ
(i)
L (x) = θ(ci · x − ai), (4)

where θ(x) is the Heavyside step function. For the right child node,

µ
(i)
R (x) = θ(ai − ci · x). (5)

The absolute degree of membership is given by

µiα(x) = µi(x)µ(i)
α (x), α = L, R, (6)

where µi(x) is the absolute degree of membership for the parent node ti, which
can be recursively calculated using (6) until the root node is reached. By defini-
tion, all points belong to the root node, so that µ0(x) = 1; ∀x.

Given a vector of attributes x, the value predicted by the for the dependent
variable is

ȳ(x) =
∑
tl∈T̃

µl(x)ȳl(x), (7)

where ȳl(x) is the linear predictor associated to the terminal node tl given by
(1). The set of terminal nodes is denoted by T̃ .

Note that Equation (7) remains valid with real-valued degrees of membership.
It is therefore possible to replace the Boolean test (2) by a fuzzy test, charac-
terized by a real-valued membership function. A natural choice for fuzzification
is to use sigmoidal functions of inverse width bi. In this way, the membership
functions (4) and (5) are replaced by

µ
(i)
L (x) =

1
1 + exp[−bi(ci · x − ai)]

, µ
(i)
R (x) = 1 − µ

(i)
L (x). (8)



354 V. Medina-Chico, A. Suárez, and J.F. Lutsko

The splitting threshold of a standard crisp tree is broadened into a splitting
band. Outside this band, examples are assigned to one of the child nodes with
degree of membership very close to one. It is for the examples that fall within
this band that the fuzzy character of the tree becomes important: examples are
assigned to both child nodes with relevant degrees of membership. A crisp split
can be seen as the limiting case of a fuzzy split when bi → ∞.

Once the fuzzy structure of the tree has been fixed, the parameters of the
splits are adjusted by minimization of a global cost function. In a fuzzy regression
tree, the cost function is the mean squared error of the tree predictions in the
training set. The optimization problem is similar to that encountered in neural
networks, where the problem is solved by the backpropagation algorithm. Here
the problem is solved by a similar algorithm in which the estimations at the
leaves are propagated from the leaves upwards to the root node.

It is important to notice that a fuzzy tree assigns each example to every
leaf node with some degree of membership, which depends on the conjunction
of tests leading to the leaf node and which can be calculated by iteration of (6)
until the root node is reached. For a leaf node, the prediction for a given vector
of attributes x is a linear model given by (1). For an inner node, ti, it can be
defined as the prediction of the subtree T (ti) (the tree composed of ti as the
root node and all of its descendants) and can be calculated using the recursion

ȳi(x) = µ
(i)
L (x)ȳiL(x) + µ

(i)
R (x)ȳiR(x). (9)

The value predicted by the regression tree for the dependent variable can be
obtained by iterating (9) from the predictions at the leaves to the root node,
in a manner similar to the backpropagation algorithm in neural networks. This
algorithm fixes the structural parameters of the tree by minimizing a global cost
function, thus avoiding the greedy approach of traditional crisp trees.

The optimization of the cost function (3) with respect to the parameter αj

of node tj yields

∂Rtrain(T )
∂αj

=
1

Ntrain

Ntrain∑
n=1

−2(yn − ȳ(xn))
∂ȳ(xn)

∂αj
= 0. (10)

For a leaf node tl, the parameters αj are the coefficients in the linear fit βl.
Using the expression

∂ȳ(x)
∂βl

= µl(x)x̃, (11)

where x̃ = {1, x1, . . . , xD}, equation (10) becomes

Ntrain∑
n=1

(yn − ȳ(xn))µl(xn)x̃n = 0, (12)

thus resulting in D+1 equations. For an inner node, ti, the results are analogous
to those in [21]



Backpropagation in Decision Trees for Regression 355

Ntrain∑
n=1

(yn − ȳ(xn))µi(xn)(ȳiL(xn) − ȳiR(xn))
∂µ

(i)
L (xn)
∂ξi

= 0, (13)

where ξi = {−biai, bici} are the parameters of the membership function (8), and

∂µ
(i)
L (xn)
∂ξi

= x̃µ
(i)
L (x)µ(i)

R (x). (14)

The solutions to the system of equations (12) and (13) are the parameters
that characterize the optimized PLM tree. In this work, the optimization problem
is solved by a quasi-Newton method (the Broyden-Fletcher-Goldfarb-Shanno
algorithm [17]). Because the prediction of the tree for any example is given by
the combination of the predictions at each of the leaves and not by the individual
predictions themselves, the estimations of the parameters of the linear models
at the leaves are propagated upwards to the root node in order to obtain the
values of ȳi(xn) that are needed in the computation of (3) and its derivatives.

4 Experiments

The objective of this section is to show how the design of a global optimization
algorithm leads to an improvement in the performance of a regression tree. The
algorithm was tested on a variety of data sets, both synthetic and real world
data sets. The Housing and Servo are real-world data sets and were obtained
from the UCI repository (ftp ics.uci.edu/pub/machine-learning-databases). The
synthetic data sets focus on several regression problems in the presence of noise
and/or irrelevant data. These data sets have been suggested by Cherkassky and
Mulier (see Table 1) [7] and by Friedman [9]. The sets suggested by Friedman
are

– Friedman #1: There are ten independent predictor variables x1, . . . , x10 each
of which is uniformly distributed over [0, 1]. The response is given by

y = 10sin(πx1x2) + 20(x3 − 0.5)3 + 10x4 + 5x5 + N(0, 1). (15)

– Friedman #2, #3: They are both 4-variable data sets with

y = (x2
1 + (x2x3 − (1/x2x4))2)1/2 + ε2

y = tan−1
(

x2x3 − (1/x2x4)
x1

)
+ ε3, (16)

where the variables are uniformly distributed over the ranges

0 ≤ x1 ≤ 100, 20 ≤ (x2/2π) ≤ 280, 0 ≤ x3 ≤ 1, 1 ≤ x4 ≤ 11. (17)

The noise variables ε2, ε3 are distributed as N(0, σ2
2), N(0, σ2

3) with σ2, σ3
selected to give 3:1 signal/noise ratios.



356 V. Medina-Chico, A. Suárez, and J.F. Lutsko

Table 1. Data set summaries for the first experiment (from Ref. [7]).

Set Attributes x Function f(x) Range σnoise
1 x1 = a2, x2 = b2, x3 = cos(a2 + b2) a + b a, b ∈ [0, 1] 0.1
2 x1 = a2, x2 = sin b, x3 = cos(a2 + b2) a b a, b ∈ [0, 1] 0.1
3 x1 = a2, x2 = (a2 − 0.5)2, x3 = cos(a2 + b2) a a, b ∈ [0, 1] 0.1
4 x1 = sin 2πa, x2 = cos 2πa a a ∈ [0, 1] 0.1
5 x1 = a, x2 = sin a cos a a ∈ [−1, 1] 0.05
6 x1 = a, x2 = a2 (1 − 0.5(a2 + a4))

1
2 a ∈ [−1, 1] 0.05

7 x1 = x2 = x3 = a (1 − a2)
1
2 a ∈ [−1, 1] 0.05

8 x1 = x3 = a, x2 = cos a, x4 = a2, x5 = a3 sin a a ∈ [−1, 1] 0.05
9 x1 = a, x2 = sin 2πa cos 2πa a ∈ [−1, 1] 0.05

Table 2. Data set summaries for the second experiment.

Set Size No. Inputs Ntrain Ntest

Housing 506 13 455 51
Servo 167 4 150 17

Friedman #1 1200 10 200 1000
Friedman #2 1200 4 200 1000
Friedman #3 1200 4 200 1000

Both CART and the stepwise algorithm used to select the number of PLM
variables have a tendency to prefer simple hypotheses. Following this philosophy,
the global optimization algorithm only tunes the parameters corresponding to
those variables that appear in the tree in the splits or in the linear models at
the leaves. However, other possibilities are being considered.

Table 3 summarizes experiments with data sets with (Ntrain = Ntest = 300)
where the performance of the algorithm designed in this work is compared to
different extensions of CART. The values reported are the root mean square
errors normalized by the standard deviation of the realization of the noise. With
this normalization, a perfect predictor would achieve a value of one. We observe
that our algorithm gives very similar predictions than fuzzy CART, though for
7 of the data sets the predictions of our algorithm are better than the other
extensions to CART. For the other two data sets (4 and 9), the results are
within one standard deviation of the best result.

The decrease in size is remarkable. This is a consequence of the stepwise PLM
character of the tree. The increased complexity of the predictions at the leaves is
compensated with a reduction in the decision nodes, which implies a reduction
in size. The size for the fuzzy versions is the same than for the non-fuzzy ones
and is indicated in the third and sixth columns of Table 3.

The prediction quality is much better in the fuzzy versions of the CART
algorithm. This is due to several advantages, namely:



Backpropagation in Decision Trees for Regression 357

Table 3. Results with Ntrain = Ntest = 300.

Set CART Fuzzy CART Size CART+PLM Fuzzy CART+PLM Size
1 1.48 (0.06) 1.09 (0.03) 9.6 (1.8) 1.13 (0.03) 1.09 (0.06) 2.9 (0.3)
2 1.28 (0.07) 1.06 (0.03) 7.9 (1.1) 1.09 (0.04) 1.04 (0.01) 2.4 (0.7)
3 1.11 (0.04) 1.03 (0.03) 8.2 (0.9) 1.03 (0.02) 1.03 (0.02) 2.0 (0.0)
4 1.31 (0.13) 1.11 (0.08) 6.1 (2.0) 1.18 (0.14) 1.13 (0.09) 2.0 (0.0)
5 1.21 (0.07) 1.02 (0.02) 8.1 (1.3) 1.03 (0.02) 1.01 (0.01) 2.0 (0.0)
6 1.29 (0.08) 1.03 (0.02) 6.5 (0.7) 1.09 (0.04) 1.02 (0.01) 2.3 (0.5)
7 1.54 (0.11) 1.03 (0.02) 8.4 (1.1) 1.14 (0.05) 1.03 (0.02) 5.5 (1.3)
8 1.42 (0.11) 1.05 (0.04) 11.3 (0.9) 1.05 (0.03) 1.02 (0.01) 3.1 (1.7)
9 3.84 (0.30) 1.06 (0.03) 12.3 (0.8) 1.90 (1.25) 1.11 (0.09) 9.0 (4.0)

– The tree parameters are found through the optimization of a global cost func-
tion, in contrast to the greedy strategy used in the construction of standard
decision trees.

– The functions are approximated continuously. The CART/PLM tree tries to
adjust a linear model to the function in each region. There are no constraints
between the boundaries of the different regions, thus yielding a discontinuous
representation. This is not the case now. This also limits the tendency to
overfitting.

– The notion of locality is recovered. Due to the introduction of smooth splits,
data points very close to each other in the attribute space will have similar
degrees of membership for each leaf.

In a second group of experiments, the performance of globally optimal CART
regression trees is compared to ensemble algorithms, such as bagging [2] and
smearing [5]. The data sets used in the second experiment are described briefly in
Table 2, together with the training and test sizes for each of them. The numbers
reported in Table 4 are averages over 10 independent runs of the algorithm
and show the mean generalization error with its standard deviation between
parentheses. The algorithm designed in this work is significantly better than
bagging for all the data sets considered and better than smearing for 4 datasets,
being second only in Friedman #1, but within one standard deviation from the
best result. For the Servo dataset, the results from [5] are not shown due to
unresolved discrepancies in the values [6].

The performance of Fuzzy CART trees with Linear Models at the leaves
trees (Fuzzy CART+PLM) is systematically better than a Fuzzy CART tree
alone (Fuzzy CART), although in some cases the results are not statistically
significant. The reduced size of the trees generated and thus the interpretability
of the predictions is also a factor to take into account.



358 V. Medina-Chico, A. Suárez, and J.F. Lutsko

Table 4. Root mean-square error estimates.

Data set Fuzzy CART Fuzzy CART+PLM Bagging Smearing
Housing 3.4 (0.3) 3.1 (0.3) 3.26 3.21
Servo 0.6 (0.2) 0.4 (0.2) - -

Friedman #1 2.5 (0.2) 2.30 (0.09) 2.50 2.24
Friedman #2 136 (9) 134 (7) 146 149
Friedman #3 0.15 (0.02) 0.149 (0.002) 0.158 0.153

5 Summary and Conclusions

A backpropagation algorithm to generate decision trees optimized with a global
cost function has been applied to the problem of approximating an unknown
real-valued function from data. The method takes as a starting point a CART
regression tree extended with linear models at the leaves. In order to make op-
timization by analytic methods possible, the standard crisp splits of a CART
tree are replaced by sigmoidal continuous splits. The predictions of the model
are propagated from the leaves upward towards the root node in order to the
calculate the derivatives of the global cost function used in the optimization
procedure. This backpropagation algorithm makes it possible to adjust the pa-
rameters of the tree so that, given the fixed tree structure, a minimum of the
cost function is reached.

The introduction of continuous splits can be seen as giving the tree a fuzzy
character. In regression problems, fuzzification has the advantage of yielding a
continuous approximation to the unknown function recovering the notion of lo-
cality lost in the traditional decision-tree approximation. It also enlarges the
expressive capabilities of the tree incorporating in the construction of symbolic
learners the robustness and flexibility of connectionist ones. However, some in-
terpretability is lost with respect to the clarity of a single tree.

The experiments carried out both in synthetic and real-world datasets show
that the algorithm designed leads to a significant improvements with respect
to the performance of standard CART trees, remaining robust to noise and
irrelevant attributes. Its performance is also better than methods that involve a
much greater number of parameters such as bagging and smearing.

References

1. Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J.: Classification and
Regression Trees. Chapman & Hall, New York (1984).

2. Breiman, L., Bagging Predictors: Machine Learning, 24 (1996) 123-140.
3. Breiman, L.: Bias, Variance and Arcing Classifiers. Technical Report 460, Statistics

Department, University of California, (1996).
4. Breiman, L.: Arcing Classifiers (with Discussion). The Annals of Statistics, 24

(1998) 2350-2383.



Backpropagation in Decision Trees for Regression 359

5. Breiman, L.: Randomizing Outputs to Increase Prediction Accuracy. Machine
Learning, 40 (2000) 229-242.

6. Breiman, L.: Private Communication.
7. Cherkassky, V. and Muller, F.: Statistical and Neural Network Techniques for Non-

parametric Regression. In: Cheeseman, P.W. and Oldford, R.W. (eds.): Selecting
Models from Data. Springer-Verlag, New York (1994) 383-392..

8. Freund, Y. and Schapire, R.E.: Experiments with a New Boosting Algorithm. In
Machine Learning: Proc. 13th International Conference. Morgan-Kaufmann, San
Francisco (1996) 148-156.

9. Friedman, J.H.: Multivariate Adaptative Regression Splines (with Discussion). The
Annals of Statistics, 19 (1991) 1-141.

10. Gelfand, S.B., Ravishankar, C.S. and Delp, E.J.: An Iterative Growing and Prun-
ing Algorithm for Classification Tree Design. IEEE Trans. Pattern Analysis and
Machine Intelligence, 13, 2 (1991) 163-174.

11. Geman, S., Bienenstock, E. and Doursat, R.: Neural Networks and the
Bias/Variance Dilemma. Neural Computation, 4 (1992) 1-58.

12. Quinlan, J. R. Learning with continuous classes, Proceedings of the Australian
Joint Conference on Artificial Intelligence (1992) 343-348.

13. Jennrich, R.E.: Stepwise Regression. In: Statistical Methods for Digital Computers.
Wiley, New York (1977) 58-75.

14. Jordan, M.I. and Jacobs, R.A.: Hierarchical Mixtures of Experts and the EM al-
gorithm. Neural Computation, 6 (1994) 181-214.

15. Kohavi, R. and Wolpert, D.H.: Bias Plus Variance Decomposition for Zero-one Loss
Functions. In Machine Learning, Proc. 13th International Conference. Morgan-
Kaufmann, San Francisco (1996) 275-283.

16. Kong, E.B. and Dietterich, T.G.: Error-correcting Output Coding Corrects Bias
and Variance. In Proc. 12th International Conference on Machine Learning.
Morgan-Kaufmann, San Francisco (1995) 313-321.

17. Press, W. Teukolsky, W.T., Vetterling, S.A. and Flannery, B.: Numerical Recipes
in C: The Art of Scientific Computing. Cambridge Univ. Press, Cambridge (1993).

18. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Ma-
teo (1993).

19. Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1, 1 (1986) 81-106.
20. Schapire, R.E., Freund, Y. Bartlett, P. and Lee, W.S.: Boosting the Margin: a New

Explanation for the Effectiveness of Voting Methods. The Annals of Statistics 26
5 (1998) 1651-1686.

21. Suárez, A. and Lutsko, J.F.: Globally Optimal Fuzzy Decision Trees for Classifi-
cation and Regression. IEEE Trans. Pattern Analysis and Machine Intelligence 21
12 (1999) 1297-1311.

22. Suárez, A. and Lutsko, J.F.: Automatic Induction of Piecewise Linear Models with
Decision Trees. In Proc. International Conference on Artificial Intelligence, Vol 2.
H.R. Arabnia ed. Las Vegas, (2000) 1025-1031.


	Introduction
	Relation to Previous Work
	Optimization of PLM Regression Trees
	Experiments
	Summary and Conclusions

