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Abstract. State of the art equation discovery systems are concerned
with the empirical approach to modeling of physical systems, where none
or a very limited portion of the expert knowledge about the observed
system is used in the modeling process. In this paper, we propose a for-
malism for integration of the population dynamics modeling knowledge
into the process of equation discovery. The formalism allows the encoding
of a high-level domain knowledge accessible to human experts. The en-
coded knowledge can be automatically transformed into the operational
form of context dependent grammars. We present an extended version
of the equation discovery system Lagramge that can use these con-
text free grammars. Experimental evaluation shows that the integration
of domain knowledge in the process of equation discovery considerably
improves the efficiency and noise robustness of Lagramge.

1 Introduction

Most of the work in scientific discovery [4] is concerned with assisting the em-
pirical approach to modeling of physical systems. Following this approach, the
observed system is modeled on a trial-and-error basis to fit observed data. None
or a very limited portion of the available domain background knowledge about
the observed system is used in the modeling process. This is especially the case
in domains where a limited amount of knowledge is expressed in the form of
mathematical laws, such as biology, medicine and other life sciences. The em-
pirical approach is in contrast to the theoretical approach to modeling, where
the basic physical processes involved in the observed system are first identified.
Then, the human expert uses the domain knowledge about the identified pro-
cesses to write down a proper structure of the model in the form of differential
equations. Finally, the values of the constant parameters of these equations are
fitted against the observed data using system identification methods [5].

The focus of this paper is on integrating expert theoretical knowledge about
the domain of interest within the process of automated modeling of population
dynamics. The equation discovery system Lagramge [7] has made initial steps
toward this integration. It allows the user to define the space of possible equa-
tions using a context free grammar, written on the basis of the user background
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knowledge about the domain at hand. However, one can argue that it is diffi-
cult to encode a context free grammar from the expert domain knowledge. In
this paper, we propose a formalism for encoding population dynamics modeling
knowledge that is more accessible to human experts. It allows an automated
generation of a grammar for equation discovery. The generated grammar is con-
text dependent (and not context free as in Lagramge), so Lagramge 2.0 was
developed that, among other improvements, allows the use of context dependent
constraints in the grammar specifying the space of possible equations. The ex-
perimental evaluation of the proposed framework shows that integrating expert
knowledge within the process of equation discovery considerably improves the
efficiency and noise robustness of Lagramge.

The paper is organized as follows. Section 2 gives a brief introduction to
equation discovery. The basics of population dynamics modeling are introduced
in Section 3. The formalism for encoding the population dynamics modeling
knowledge and the process of its transformation into a grammar for equation
discovery are presented in Section 3. The necessary improvements of Lagramge
are presented in Section 4. The experimental evaluation of Lagramge 2.0 is
given in Section 5. The last Section 6 summarizes the paper and gives directions
for further work.

2 Equation Discovery

Equation discovery is the area of machine learning that develops methods for
automated discovery of quantitative laws, expressed in the form of equations, in
collections of measured data [4]. It is related to the area of system identification.
However, mainstream system identification methods work under the assumption
that the structure of the model, i.e., the form of the equations, is known and are
concerned with determining the values of the constant parameters in the model
[5]. Equation discovery systems, on the other hand, aim at identifying both
an adequate structure of the equations and appropriate values of the constant
parameters.

2.1 Background Knowledge and Language Bias

Equation discovery systems search through the space of possible equation struc-
tures. Most of the equation discovery systems emulate the empirical approach to
scientific discovery: different equation structures are generated and fitted against
measured data. However, some of the possible equation structures may be in-
appropriate for modeling the observed system. For example, consider the case
where the measured variables of the observed system are not dimensionless. In
that case some algebraic combinations of the system variables, such as addition
(or subtraction) of mass and energy, are not valid. Beyond this simple example,
there are also more sophisticated inconsistencies of equation structures with a
background knowledge from the domain of the observed system.
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Different equation discovery systems explore different spaces of possible equa-
tion structures, or in other words they use different language biases. One possi-
bility is to use some pre-defined (built-in) language bias that restricts the space
of possible equation structures to some reasonably small class, such as polyno-
mials or trigonometric functions, like in Lagrange [2]. In this case, the user can
not influence the space of possible equations or use domain specific knowledge
in the process of equation discovery. It is much better to use a declarative bias
approach, where the user is allowed to influence or directly specify the space of
possible equations. This approach provides users with a tool for incorporating
their background knowledge about the domain at hand in the process of equa-
tion discovery. The use of background knowledge in the sense of a declarative
language bias can avoid the problems of inconsistency of the discovered equa-
tions with the knowledge about the domain of the observed system, mentioned
above.

Several equation discovery systems make use of domain specific knowledge.
In equation discovery systems that are based on genetic programming, the user
is allowed to specify a set of algebraic operators that can be used. A similar
approach has been used in the EF [10] equation discovery system. The equation
discovery system SDS [8] effectively uses scale-type information about the di-
mensions of the system variables and is capable of discovering complex equations
from noisy data.

However, expert users can usually provide much more modeling knowledge
about the domain at hand than merely enumerating the algebraic operators to
be used or (the scale-type of) dimensions of the measured system variables. In
order to incorporate this knowledge in the process of equation discovery, we
should provide the user with a more sophisticated declarative bias formalism.
In Lagramge [7], the formalism of context free grammars has been used to
specify the space of possible equations. Note here that context free grammars
are a far more general and powerful mechanism for incorporating domain specific
knowledge than the ones used in SDS [8] and EF [10].

The use of declarative bias in the form of context free grammar was crucial
for modeling the phytoplankton growth in Lake Glumsoe in Denmark from real-
world sparse noisy measurements [3]. However, one can argue that it is difficult
for the users of Lagramge to express their knowledge about the domain in
the form of a context free grammar. In this paper, we present a formalism for
encoding the domain knowledge at a higher, more user-friendly level, which can
be automatically transformed to the operational form of grammars for equation
discovery.

2.2 Discovery of Differential Equations

In this paper, we consider the problem of modeling dynamic systems, i.e. systems
that change their state over time. Differential equations are the most common
tool for modeling dynamic systems. Lagrange [2] was the first equation discov-
ery system that extended the scope of equation discovery systems to ordinary
differential equations. The basic idea was to introduce the time derivatives of
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the systems variables through numerical differentiation and then search for al-
gebraic equations. This simple approach has a major drawback: large errors are
introduced by numerical differentiation.

The problem was partly resolved in Lagramge, where numerical integration
is used instead of differentiation for the highest-order derivatives [7]. However,
Lagramge is only capable of discovering a differential equation for a single user
specified system variable. In order to discover a system of simultaneous differ-
ential equations, Lagramge has to be invoked once for each system variable.

3 Population Dynamics Modeling

Population ecology studies the structure and dynamics of populations, where
each population is a group of individuals of the same species inhabiting the same
area. In this paper we consider modeling the dynamics of populations, especially
the dynamics of change of their density. We consider models of predator-prey
population dynamics, where the interaction between predator and prey is an-
tagonistic in the sense that it causes increase of the predator population and
decrease of the prey population. The models are systems of differential equa-
tions [6].

3.1 Generalized Volterra-Lotka Model of Population Dynamics

Consider a simple model based on two populations, foxes and rabbits. The latter
are grazing on grass and the foxes are carnivores that hunt rabbits. We assume
that rabbits are the only food of foxes, rabbits have unlimited supply of grass and
seasonal changes are ignored. Under these assumptions, if the rabbit population
is large, the fox population grows rapidly. However, this causes many rabbits to
be eaten, thus diminishing the rabbit population to the point where the food for
foxes is not sufficient. Consequently, the fox population decreases, which causes
faster growth of the rabbit population.

The oscillatory behavior of the two population densities can be modeled using
the Volterra-Lotka population dynamics model [6]. It can be generalized using
the following schema:

Ṅ = growth rate(N) − feeds on(P, N)
Ṗ = feeds on(P, N) − decay rate(P ),

where N is the prey (rabbit) population density and P is the predator (fox)
population density.

Using this model schema, we can build models of predator-prey population
dynamics with different complexity. The term growth rate(N) defines the model
of the prey population growth in absence of predation. Two models of single
population growth are usually used [6]: (a) aN ; and (b) aN(1 − N/K). The first
model (a) assumes that the population growth is exponential and unlimited.
However, there are real-world environments that have some carrying capacity
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for the population, which limits the density of the population. In such cases,
an alternative logistic growth model (b) can be used, where K is a constant,
determining the carrying capacity of the environment.

The second assumption made in simple population models is that the pre-
dation rate is proportional to the densities of predator and prey populations
(feeds on(N, P ) = bPN). As for population growth, this means that the preda-
tion growth is exponential and unlimited. Again, in some cases the predators have
limited predation capacity. When the prey population density is small the preda-
tion rate is proportional to it, but when the prey population becomes abundant,
the predation capacity saturates to some limit value (feeds on(N, P ) = bP s(N )).
Three different terms are often used to model the predator saturation response
to the increase of the prey density (a) AN/(N + B), (b) AN2/(N2 + B) and
(c) A(1−e−BN ), where A is the limit value of the predation capacity saturation,
and B is the constant, which determines the saturation rate [6].

The modeling knowledge about population growth and saturation presented
here can be very useful as a background knowledge for automated modeling of
ecological systems with equation discovery.

3.2 Encoding of Domain and Modeling Knowledge

The knowledge about modeling population dynamics can be divided in two types.
The first type is domain specific knowledge about the populations and their role
in the food-chain. In the Volterra-Lotka model of population dynamics, this
knowledge is represented by the single fact that foxes feed on rabbits. This
type of knowledge can be expect from a biologist without any experience in
mathematical modeling of population dynamics.

The second type of knowledge is domain independent knowledge about pop-
ulation dynamics modeling, presented in the Section 3.1. This type of knowledge
can be provided by, say a mathematician with modeling experience, who is not
necessary familiar with the biological ecosystem structure and the interactions
involved.

Domain Specific Knowledge. We first provide a specification of the food-
chain in the domain: for our example rabbits and foxes domain it is given in
Table 1. We use three first-order predicates: the domain(domain name) predicate
is used to specify the name of the domain at hand; each population in the domain
is specified using the predicate population(domain name, population name);
finally, we use the predicate feeds on(domain name, predator population,
prey population) to specify each interaction between two populations. For now,
only predator-prey interactions can be specified. However, the formalism can be
easily generalized to allow the specification of other types of interactions between
populations, such as parasytism, competitive exclusion and symbiosis [6].

Note that by using the predicates population and feeds on, the user is
allowed to specify an arbitrary number of populations and predator-prey inter-
actions between them.
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Table 1. Description of a simple Volterra-Lotka population dynamics domain consist-
ing of two populations of foxes (predators) and rabbits (preys).

domain(vl).
population(vl, fox).
population(vl, rabbit). feeds on(vl, fox, rabbit).

Domain Independent Modeling Knowledge. The second part of the mod-
eling knowledge, which is domain independent, is given in Table 2. We use the
predicate template to specify a set of alternative models for population dynam-
ics processes like population growth and saturation, described in Section 3. Note
that the symbol const is used to specify a constant parameter, whose value
has to be fitted against measured data. A constraint of the form [L:U] can be
assigned to each constant parameter specifying that the value v of the constant
parameter should be within the interval L ≤ v ≤ U. Omitting the U (L) value
in this constraint means that there is no upper (lower) bound on the constant
parameter value. For example, the symbol const[0:] means that the constant
parameter should be non-negative.

Table 2. Templates with alternative sub-expressions used for modeling the processes
of saturation and population growth.

template(saturation, X, (X)).
template(saturation, X, (X / (X + const[0:]))).
template(saturation, X, (X * X / (X * X + const[0:]))).
template(saturation, X, (1 - exp(-const[0:] * X))).
template(growth, X, (const * X)).
template(growth, X, (const * X * (1 - X / const[0:]))).

Transforming the Background Knowledge into a Grammar. Using the
definitions of the background knowledge from Tables 1 and 2, a grammar for
equation discovery can be automatically generated. The process of transforma-
tion of the knowledge into grammar is automated using the predator-prey model
schema presented in Section 3. The grammar for the example population dynam-
ics domain, consisting of rabbits and foxes, is given in Table 3.

The starting non-terminal symbol in the grammar vl is used to generate the
system of two differential equations of the population dynamics model, using
the schema from Section 3. The growth of the rabbit population in the absence
of predation is modeled using the non-terminal symbol growth(rabbit) with
two alternative productions, reflecting the two template predicates for growth
from Table 2. The third non-terminal symbol feeds on(fox,rabbit) models
the predation of foxes on rabbits. The predation rate is always proportional
to the density of the fox population and the non-terminal nutrient(rabbit)
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Table 3. A grammar for equation discovery constructed from the background knowl-
edge in Tables 1 and 2.

vl -> time deriv(rabbit) = growth(rabbit) - feeds on(fox,rabbit);
time deriv(fox) = feeds on(fox,rabbit) - const * fox

feeds on(fox,rabbit) -> const * fox * nutrient(rabbit)
nutrient(rabbit) -> rabbit
nutrient(rabbit) -> rabbit / (rabbit + const[0:])
nutrient(rabbit) -> rabbit * rabbit / (rabbit * rabbit + const[0:])
nutrient(rabbit) -> 1 - exp(-const[0:] * rabbit)
growth(rabbit) -> const * rabbit
growth(rabbit) -> const * rabbit * (1 - rabbit / const[0:])

is used to introduce the model of predator response to the increase of rabbit
population density (the productions reflect the templates from Table 2). The
terminal symbols fox and rabbit are used to introduce the measured system
variables of the population densities.

Strictly speaking, the grammar in Table 3 is not context free. Namely, the
production for the starting symbol vl generates two feeds on(fox,rabbit)
symbols, one in the first and another one in the second equation. In context free
grammar, these two non-terminal symbols can generate two different expressions.
In population dynamics models, however, these two expressions have to be the
same. The use of context dependent constraints can overcome this limitation of
the context free grammars.

4 Lagramge 2.0

In order to use grammars like the one from Table 3 for equation discovery, we
developed Lagramge 2.0, an improved version of Lagramge 1.0 [7]. Improve-
ments were made in three directions. First, the context dependent constraints
have to be checked for each expression. Second, the grammar in Table 3 gener-
ates all model equations at once, therefore a system of simultaneous equations
has to be discovered, instead of a single equation for each system variable sep-
arately. Third, the constraints on the lower and upper bound of the values of
the constant parameters have to be considered. The top-level algorithm of the
Lagramge 2.0 exhaustive search procedure is presented in Table 4.

The search procedure of Lagramge 2.0 takes as an input a set of variables
V , a (sub)set of dependent variables Vd ⊆ V , a data set Data with measured
time behaviors of the variables in V , a (context dependent) grammar G, and a
parameter b that determines the number of best models (systems of equations)
returned as output of Lagramge.

The search space of Lagramge is the set of parse trees that can be derived
with the user provided grammar G. The search space is ordered according to the
height of the parse trees using the refinement operator defined in [7]. Starting
with an empty parse tree, it can be repeatedly used to generate all parse trees.
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Table 4. Exhaustive search procedure of Lagramge 2.0.

procedure LagramgeSearch(V , Vd, Data, G, b)
1 Q← {}
2 S ← enumerate all derivation trees in G
3 foreach T in S do
4 if CheckConstraints(T , G) then
5 T .error ← 0.0
6 foreach v in Vd

7 T .error ← T .error + Fit(v̇ = T.v, Data)
8 endfor
9 endif
10 Q← Q ∪ T
12 endwhile
11 return the b best parse trees in Q

Context Dependent Constraints. Each generated parse tree is first checked
to see if it satisfies the context dependent constraints in G (line 4 of the algorithm
in Table 4). The user is allowed to specify an arbitrary number of context depen-
dent constraints for each production in the grammar. Examples of productions
with context dependent constraints are presented in Table 5.

Table 5. Examples of grammar productions with context dependent constraints.

E -> A + B, B - A { A.1 == A.2; }
E -> A + B, B - A { A.1 == A.2; B.1 == B.2; }
E -> A * E { A <= E; }

In the first production, a single constraint A.1 == A.2 specifies that the
first (A.1) and the second (A.2) occurrence of the symbol A on the right hand
side of the production should generate the same sub-expression. For example, the
expression a1 + b1, b2 - a2 can not be derived using that production (A.1 ->
a1 is different from A.2 -> a2), whereas the expression a1 + b1, b2 - a1 can.
However, the latter expression can not be derived using the second production
due to the second constraint B.1 == B.2. a1 + b1, b1 - a1 is an example of
an expression that can be derived using both productions.

The third production illustrates the use of a context dependent constraint
to avoid redundant generation of expressions that are equivalent due to the
commutativity of multiplication. The context free production E -> A * E can
generate both a * b and b * a. On the other hand, using the context dependent
constraint A <= E (where the operator <= stands for lexicographic comparison),
the second expression b * a can not be derived.



486 L. Todorovski and S. Džeroski

Simultaneous Equations. In order to evaluate a system of simultaneous equa-
tions for the user provided set of dependent variables Vd, the sub-trees Tv of the
generated tree T are identified for each dependent variable v ∈ Vd. Then the
error of each equation of the form v̇ = T.v is evaluated (using the Fit function
in line 7 of the algorithm in Table 4), where T.v here denotes the expression de-
rived by the sub-tree Tv. The errors of the equations for all dependent variables
are added together to obtain the error of the whole parse tree T (lines 5-8).

Constraints on the Values of the Constant Parameters. The function
Fit(equation, Data) is used to fit the values of the constant parameters of the
equation to the given data set Data. The discrepancy between the measured data
Data and the data obtained by simulating the equation is used to evaluate the
error of the equation. The nonlinear regression algorithm used in Lagramge
1.0 can not impose any constraints on parameter values. Because of this, we
replaced replaced it with the nonlinear regression algorithm proposed in [1]. The
latter allows the use of simple constraints specifying the lower and upper bounds
on the values of the constant parameters.

5 Experiments

The goal of the experiments with Lagramge, presented in this section, is to
evaluate the effect of using the new type of background knowledge in the pro-
cess of equation discovery. For that purpose, we compared the performance of
Lagramge 2.0 with the performance of Lagramge 1.0 on a task of recon-
structing different models of a simple aquatic ecosystem consisting of three pop-
ulations of inorganic nutrient, phytoplankton and zooplankton. The food-chain
in the ecosystem contains two predator-prey interactions: zooplankton feeds on
phytoplankton and phytoplankton feeds on inorganic nutrient.

5.1 Experimental Setup

Using the food-chain description along with the domain independent modeling
templates from Table 2, the context dependent grammar presented in Table 6
has been built using the algorithm described in Section 3.2. The grammar in
Table 6 generates thirty-two different models, i.e. systems of three simultaneous
equations, which are used in the experiments. The experimental evaluation of
Lagramge 2.0 consisted of attempting to reconstruct each of these 32 models
from simulated data.

Using the grammar, we generated all thirty-two different model structures.
In order to obtain simulation models, the values of the constant parameters
have to be set. We used randomly generated values uniformly distributed on the
[0, 1] interval. We simulated each of the thirty-two obtained models from ten
different randomly selected initial states (initial values of nut, phyto and zoo)
for 100 time steps of 1. Thus, ten different behaviors were obtained of each of
the thirty-two models.
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Table 6. A grammar for equation discovery in the aquatic ecosystem domain con-
structed from the food chain description and modeling knowledge from Table 2.

aquatic -> time deriv(nut) = - feeds on(phyto,nut);
time deriv(phyto) = growth(phyto) + feeds on(phyto,nut)

- feeds on(zoo,phyto);
time deriv(zoo) = const * zoo + feeds on(zoo,phyto)

feeds on(phyto,nut) -> const[0:] * phyto * nutrient(nut)
feeds on(zoo,phyto) -> const[0:] * zoo * nutrient(phyto)
nutrient(nut) -> nut
nutrient(nut) -> nut / (nut + const[0:])
nutrient(nut) -> nut * nut / (nut * nut + const[0:])
nutrient(nut) -> 1 - exp(-const[0:] * nut)
nutrient(phyto) -> phyto
nutrient(phyto) -> phyto / (phyto + const[0:])
nutrient(phyto) -> phyto * phyto / (phyto * phyto + const[0:])
nutrient(phyto) -> 1 - exp(-const[0:] * phyto)
growth(phyto) -> const * phyto
growth(phyto) -> const * phyto * (1 - phyto / const[0:])

In order to test the robustness of the approach to noise in the data, we
added artificially generated random Gaussian noise to the behaviors. The noise
was added at four different relative noise levels: 1%, 5% and 10%. The relative
noise level of l% means that we multiplied the original value x with (1+l∗G/100)
to obtain a noisy value, where G is a normally distributed random variable with
mean equal to 0 and standard deviation equal to 1.

Two evaluation criteria were used for evaluating the performance of the equa-
tion (re)discovery. First, the leave-one-out procedure was applied in order to esti-
mate the error of discovered equations on test data, unseen during the discovery
process. In each iteration of the leave-one-out procedure, nine out of ten behav-
iors were used to discover a system of differential equations with Lagramge.
The obtained differential equations were then simulated using the initial state
of the remaining (test) behavior. The simulation error was measured as a sum
of squared differences between the simulated behavior and the test behavior.
Second, the structure of the best model discovered by Lagramge, was matched
against the structure of the original model equations. The structure of the equa-
tions is obtained by abstracting the values of the constant parameters in them
and replacing them with the generic symbol const.

5.2 Experimental Results

We compared the performance of (1) Lagramge 2.0 using the context depen-
dent grammar with the performance of (2) Lagramge 2.0 using the grammar
without constraints on the values of the constant parameters, and (3) Lagramge
1.0 (where no context dependent constraints, and no constraints on the values
of the constant parameters can be used). The results of the comparison are
summarized in Tables 7 and 8.
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Before we discuss the experimental results, we should note here that the using
the context dependent constraints in the grammar reduces the space of possible
models. The grammar in Table 6 generates thirty-two models when interpreted
as a context dependent grammar. On the other hand, when interpreted as a
context free grammar (as interpreted by Lagramge 1.0) this grammar generates
512 possible models. Therefore, using context dependent constraints reduces the
search space of Lagramge by a factor of sixteen.

Table 7. Performance of Lagramge 2.0 (L2.0), Lagramge 2.0 without applying
constraints on constant parameters (L2.0-ncc) and Lagramge 1.0 (L1.0). Left hand
side: average sum of squared errors on the test behavior. Right hand side: number of
successfully reconstructed original model structures.

average test error structure reconstruction
noise level L2.0 L2.0-ncc L1.0 L2.0 L2.0-ncc L1.0

0% 0.0031 0.0020 0.0006 29 28 5
1% 0.0083 *(1) *(10) 8 6 0
5% 0.1490 *(6) *(13) 3 5 1

10% 0.6187 *(6) *(13) 4 5 2

In the left hand side of Table 7 the average leave-one-out testing error of the
thirty-two (re)discovered models is given. Note that the symbol *(N) means that
N out of thirty-two (re)discovered models could not be simulated (and therefore
the average error could not be properly evaluated) due to the singularities, such
as division by zero or unstable behavior of the discovered system of differential
equations. Some of the singularities were caused by inappropriate values of the
constant parameters (e.g., negative saturation limit or carrying capacity): these
are the reasons for the failure of Lagramge 2.0 without applying the constraints
on the values of the constant parameters to discover a valid model. In models
discovered by Lagramge 1.0, some of the simulation failures are also caused by
inappropriate model structure, due to the lack of context dependent constraints.

These results shows one important aspect of the noise robustness of La-
gramge 2.0: at all noise levels it discovers models that can be simulated and
have stable behaviors. This is due both to the context dependent constraints
and the constraints on the values of the constant parameters. This is very im-
portant: in our earlier experiments on modeling phytoplankton growth in Lake
Glumsoe, we had to manually filter out models, discovered by Lagramge 1.0
with inappropriate values of the constant parameters [3].

In Table 8, the win-loss-tie counts for the comparison of the test error is
presented. We counted the number of wins, losses and ties in the following man-
ner. For each of the thirty-two experiments, we compared the simulation error
e1 of Lagramge 2.0 with the simulation error e2of the other two algorithms
(L2.0-ncc and L1.0 in Table 8). Comparisons where the relative difference of
the simulation errors is less than 10% (0.9 < e2/e1 < 1.1) are considered ties.
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Table 8. Win-loss-tie counts for comparison of the test error of (L2.0) with the test
errors of L2.0-ncc and L1.0 (see caption of Table 7).

noise level L2.0 vs. L2.0-ncc L2.0 vs. L1.0
0% 10-9-13 26-2-4
1% 4-5-23 18-2-12
5% 7-12-13 16-6-10

10% 6-16-10 14-10-8

The comparison of simulation errors shows clear performance improvement
of Lagramge 2.0 over Lagramge 1.0 for all noise levels. On the other hand,
models discovered by Lagramge 2.0 without applying the constraints on the
values of the constant parameters better fits noisy data than the ones generated
with Lagramge 2.0. This observation shows that models with inappropriate
values of the constant parameters (or inappropriate structure for models discov-
ered by Lagramge 1.0) can sometimes fit the observed data better. However,
these models do not make sense from biological point of view.

6 Discussion

In the paper, a new approach to representing and using background knowledge
for equation discovery is presented. The formalism for encoding knowledge about
population dynamics, allows encoding two types of knowledge. The first type is
domain specific knowledge about predator-prey food chain in the domain and
can be provided by a biologist without any experience in mathematical modeling.
The second type of knowledge is modeling knowledge in form of typical models
used for modeling different population dynamic processes, such as growth of a
population and saturation of predation. The modeling knowledge is provided by
a population modeling expert, not necessary familiar with the domain at hand.
This is high-level knowledge represented in first-order logic, which can be auto-
matically transformed to the operational form of grammars used to guide the
search for models in the process of equation discovery. This can be done for ar-
bitrarily complex predator-prey models consisting of any number of populations
and interactions between them. The proposed formalism can be easily extended
with predicates for specifying other types of interactions between populations,
such as parasytism, competitive exclusion and symbiosis.

The grammars generated using the presented approach are context depen-
dent and generate context dependent and generate whole models, i.e., systems
of simultaneous equations. The equation discovery system Lagramge 2.0 was
developed that accept such grammars. Using context dependent constraints re-
duces the space of possible models as compared to purely context free grammars
used in Lagramge 1.0. Therefore, context dependent constraints improve the
efficiency of Lagramge.

Experimental evaluation of Lagramge 2.0 shows that both context depen-
dent constraints and constraints on the values of the constant parameters im-
proves noise robustness of Lagramge in several ways. First, all the models
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(re)discovered by Lagramge 2.0 at different noise levels can be simulated and
generate stable behaviors. Second, all the models have clear interpretations from
biological point of view. Finally, Lagramge 2.0 (re)discovers the original model
structure more often than Lagramge 1.0. The experimental results should be
further confirmed with experiments on the real-world observational data. These
include modeling phytoplankton growth in Danish lake Glumsoe, predicting al-
gae blooms in Lagoon of Venice [3] and modeling plankton population dynamics
in Japanese lake Kasumigaura [9].

Currently, the presented formalism focuses on representing background kno-
wledge for population dynamics modeling. However, the presented formalism
can be extended so knowledge about dynamic processes from other areas can be
encoded and used for equation discovery. The knowledge should include ontology
of typical processes in the area (such as predator-prey interaction and population
growth in population dynamics) and templates of models typically used for mod-
eling these processes. Finally, knowledge from different areas can be organized
in the form of libraries of background knowledge for equation discovery.
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