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Abstract. It is well known that ensembles of predictors produce better accuracy
than a single predictor provided there is diversity in the ensemble. This
diversity manifests itself as disagreement or ambiguity among the ensemble
members. In this paper we focus on ensembles of classifiers based on different
feature subsets and we present a process for producing such ensembles that
emphasizes diversity (ambiguity) in the ensemble members. This emphasis on
diversity produces ensembles with low generalization errors from ensemble
members with comparatively high generalization error. We compare this with
ensembles produced focusing only on the error of the ensemble members
(without regard to overall diversity) and find that the ensembles based on
ambiguity have lower generalization error. Further, we find that the ensemble
members produced focusing on ambiguity have less features on average that
those based on error only. We suggest that this indicates that these ensemble
members are /ocal learners.

1. Introduction

Ensembles of classifiers have recently emerged as a robust technique to improve the
performance of a single classifier. Several ways to define an ensemble have been
explored, from training each classifier in a subpart of the training set, to giving each
classifier a subset of the features available.

When selecting an ensemble of classifiers a very simple approach consists of two
separate steps: first a group of independently “good” classifiers is selected, then they
are aggregated to form an ensemble. Such an approach has the advantage of
simplicity, both conceptually and computationally, but the main disadvantage is that
the classifiers are selected for the results they obtain singly and not for their
contribution in the context of the ensemble. Following the work of Krogh and
Vedelsby (1995), which demonstrated the crucial role played by the disagreement
(ambiguity) in the final prediction of an ensemble, other less straightforward
approaches have been proposed to build an ensemble of good predictors that have a
high degree of disagreement. Among them the most relevant results were obtained by
Liu (1999), who introduced a negative correlation penalty term to train ensembles of
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neural networks, and that by Optiz and Shavlik (1996), who used the notion of
ambiguity to find a diverse ensemble of neural networks using a genetic algorithm.

In this paper we focus on ensembles of classifiers based on different feature
subsets and describe an algorithm that selects the different feature subsets (and thus
the ensemble members) not just to minimize individual error but also to maximize
ambiguity. This is compared with the default alternative of selecting the ensemble
members based on error only without consideration for their contribution within the
ensemble. In both scenarios the process of selecting the feature subsets is a “wrapper-
like” search process (Kohavi & John, 1998) where Hill Climbing search is used to
find a feature subset that minimizes error. In the default alternative (Cunningham &
Carney, 2000) the search is guided by the error associated with the different feature
subsets only. That research shows that the improvement due to the ensemble of
nearest neighbour classifiers is correlated with the diversity in an ensemble. However,
the diversity in the ensemble was determined after the ensemble was trained.
Whereas, in the improvement presented here, the contribution of the ensemble
member to the diversity of the ensemble is considered in the training process in order
to ensure an ensemble of diverse members.

We present a study on ensembles of k-Nearest Neighbour (k-NN) classifiers that
are trained on three different datasets with the two Hill Climbing approaches. The
results show that the technique emphasizing ambiguity outperforms the strategy
considering error only. Furthermore, we will see that forcing the classifiers to
disagree leads to classifiers with a smaller number of features. This, as argued in
(Cunningham & Zenobi, 2001) can be interpreted as an aggregation of several local
specialists.

2. Ensembles and Diversity

The key idea in ensemble research is; if a classifier or predictor is unstable then an
ensemble of such classifiers voting on the outcome will produce better results — better
in terms of stability and accuracy. While the use of ensembles in Machine Learning
(ML) research is fairly new, the idea that aggregating the opinions of a committee of
experts will increase accuracy is not new. The Codorcet Jury Theorem states that:

If each voter has a probability p of being correct and the probability of a majority

of voters being correct is M, then p > 0.5 implies M > p. In the limit, M

approaches 1, for all p > 0.5, as the number of voters approaches infinity.
This theorem was proposed by the Marquis of Condorcet in 1784 (Condorcet, 1784) —
a more accessible reference is (Nitzan & Paroush, 1985). We now know that M will
be greater that p only if there is diversity in the pool of voters. And we know that the
probability of the ensemble being correct will only increase as the ensemble grows if
the diversity in the ensemble continues to grow as well. Typically the diversity of the
ensemble will plateau as will the accuracy of the ensemble at some size between 10
and 50 members.

In ML research it is well known that ensembling will improve the performance of
unstable learners. Unstable learners are learners where small changes in the training
data can produce quite different models and thus different predictions.
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2.1 Diversity Based on Different Feature Subsets

The most common means of producing diversity in an ensemble is by training the
different ensemble members with different subset of the training data (Hansen &
Salamon, 1992; Breiman, 1996). This does not work for k-Nearest Neighbour (k-NN)
classifiers (Breiman, 1996) so instead we focus on ensembles based on different
feature subsets.

A few studies have been done on the use of feature subset selection to create an
ensemble of classifiers; among them those ones made by Cherkauer (1995), Ho
(1998a, 1998b), Guerra-Salcedo and Whitney (1999a, 1999b) Tumer and Ghosh
(1996) and Cunningham and Carney (2000) give the most promising results.
However, if the use of ensembles improves the performance from one side, from
another it reduces the other benefits of feature selection. It is clear that an ensemble of
feature subsets affects the goal of economy of representation and also dramatically
worsens the knowledge discovery (Cunningham & Zenobi, 2001), mainly because we
cannot say anymore that the outcome of a phenomenon depends on a particular subset
of features. In the last section of this paper we propose that the lack of interpretability
associated with ensembles may be recoverable if the ensemble members prove to be
local learners.

2.2 Different Measures of Diversity

There are a variety of ways to quantify ensemble diversity — usually associated with a
particular error measure. In a regression problem (continuous output problem) it is
normal to measure accuracy by the squared error so, as suggested by (Krogh &
Vedelsby, 1995), a diversity measure can be variance, defined as:

a;(x,) = [Vi(xk)_v(xk)]z @

where a; is the ambiguity of the /" classifier on example x; , randomly drawn from an
unknown distribution, while V; and V are, respectively the i classifier and the
ensemble predictions. In this scenario the error from the ensemble is: E=E—-A,
where E is the average of the single classifier errors and A is the ambiguity of the
ensemble. The equation also holds for classification, provided that the loss function
used is the squared error function and that the ensemble prediction is still given as the

weighted average of the single classifier predictions. Provided also, that we are happy
to deal with real-valued class membership figures (see example below).

However, for classification the most commonly used error measure is a simple 0/1
loss function, so a measure of ambiguity in this case is:

0 if classV,(x,) = class\7(xk) 2
a;(x,)= .
1 otherwise.

where this time the classifier and ensemble outputs for the case labeled as x; are
classes instead of real numbers.
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An Example

Our objective here is to identify an ambiguity measure that will help us determine the
contribution of an individual ensemble member to diversity. The two above can
quantify the contribution of an individual member to ensemble diversity and the
variance based measure has the advantage that it directly quantifies the improvement
due to the ensemble. To see how these would be applied in practice a simple example
is shown in Table 1 and Table 2. In order to use squared error and variance it is
necessary that the outputs of the ensemble members are real valued. This is
achievable in a variety of ways with nearest neighbour classifiers where a degree of
class membership can be aggregated from the similarity to nearest neighbours.

Table 1. An example with 3 classifiers and 5 data points. The top half of the table shows
ensembled predictions allowing continuous values and the bottom half shows 0/1 predictions

Value 1 0 1 1 0 E;
Cl 1:pred 1 0.33 1 0.33 0.67 1
Cl 2:pred 0 0 0.33 0.67 0.33 1.67
Cl 3:pred 0.33 0.67 0.67 1 0 1
Ensemb. 0.44 0.33 0.67 0.67 0.33 0.75
Cl1: 0/1 1 0 1 0 1 04
Cl2: 011 0 0 0 1 0 04
Cl13:0/1 0 1 1 1 0 0.4
Ensemb. 0 0 1 1 0 0.2

Table 2. Error and ambiguity measures for the scenario shown in Table 2.

E E A E-A
Squared Err. 0.75 1.22 0.47 0.75
0/1 Loss 0.2 0.4 0.33 0.07

In the first scenario the outputs from the individual classifiers are real valued and we
can see in Table 2 that the Ambiguity measure directly determines the improvement
due to the ensemble as Krogh and Vedelsby predict. Using 0/1 loss and the ambiguity
measure proposed above the ensemble still produces an improvement but it is not
directly related to the ambiguity figure.

While the squared error and variance figures have this very elegant relationship
these real valued class membership figures are not particularly meaningful so we will
proceed using the 0/1 loss error measure and the ambiguity metric proposed in (2).

3. Using Ambiguity to Select Ensembles of Classifiers

The aim of this study is to show how using ambiguity to select ensembles of
classifiers will improve performance. One thing that appears to be clear is that to
obtain good results an ensemble must include classifiers with a high degree of
disagreement. It is this disagreement that gives the potential to correct the errors made
by a single classifier. In the extreme case that all the classifiers are good but make
mistakes over the same subset of data, the ensemble will not give a better
performance than any single classifier.
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To compare the default selection strategy, that doesn’t take into account
diversity, and ours, which makes use of diversity (ambiguity), we will use Hill-
Climbing search for a couple of reasons. First, we have a way to compare two
ensembles performances that is not affected by any random event, once we state the
same starting point (i.e. an initial set of feature masks). If we used for example a
genetic algorithm it would be more difficult to make a direct comparison, due to its
random nature. Second, a hill-climbing strategy is computationally less expensive
then alternative stochastic search techniques. After all, we are interested in evaluating
the heuristic to guide the search rather than the comprehensiveness of the search
strategy.

3.1. The Default Search Strategy

In a classic hill climbing strategy (HC) that performs feature selection (Cunningham
& Carney, 2000) a “good” classifier is selected by flipping each bit of the feature
mask and accepting this flip if the classifier error E, decreases. (A feature subset is a
mask on the full feature set.) This process is repeated until no further improvements
are possible — i.e. a local minimum in the feature set space is reached. The error is
measured using leave-one-out testing. To produce an ensemble this process is
repeated for each classifier and at the end all the classifiers are aggregated to form the
ensemble. This approach is illustrated in Figure 1.

generate a random ensemble of feature subsets;

for every classifier i in the ensemble {
calculate initial error E;;
do {
for every bit j of the mask {
flip /" bit of i mask;
calculate new E;;
if E<=E/
flip back /" bit of i" mask; //flip rejected
else E;=E/; //flip accepted

} while there are changes in the mask AND not maximum number of
iterations;

}

aggregate classifiers to obtain ensemble prediction;

Fig. 1. HC: the default selection strategy for generating ensembles using error only.

Clearly, from what we have said about the importance of diversity, this approach has
the disadvantage that the improvement due to the ensemble may not be great because
there is no means of promoting diversity in the ensemble.
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3.2. AmbHC: A Hill-Climbing Algorithm Using Ambiguity

The dominant loss function used in classification is 0/1 loss and it is difficult if not

impossible to derive a simple and linear equation that relates E to E and A. However
it is still clear that the uplift due to the ensemble depends on the diversity in the
ensemble members (Cunningham & Carney, 2000). In the evaluation that follows we
will use 0/1 loss and the associated ambiguity introduced in equation (2).

Assuming a homogeneous distribution of the instances (so that the average is
simply obtained by dividing by N, the number of training samples) and equal weights
in the ensemble, Ambiguity is defined as:

Z:iiiia.(x )
NS mea ‘

where a(x,) is given by equation (2). As the two summations are finite we can swap
them, leading to the formula:

1 m N 1 m
ai(xk)=—2$ ai(xk):—ZAi
1 Mo IV k=i m

i=1

where the ambiguity A, of the i" classifier is defined as

_ 1 N 1 m
A—NZ—

k=1M=

A :%;axm 3)

On the basis of these definitions we may think of a new algorithm (AmbHC) that,
taking the hill-climbing strategy as a starting point, tries to build an ensemble of
classifiers with a high degree of disagreement. This approach considers every
classifier in the context of the ensemble, and at each step accepts or rejects the flip
depending on two parameters: the classifier error E, and the classifier ambiguity A, as
defined in the equation (3). If the improvement of one of the two parameters leads to a
“substantial” deterioration of the other, then the flip is rejected. With “substantial”
here we mean that a threshold value (Thresh) is given for the highest acceptable
deterioration (if we consider acceptable a deterioration of 5% then Thresh takes the
real value 0.05). The condition to accept or reject the flip of a bit is the following: if
the improvement of one of the two parameters is less than the threshold value, then
the highest acceptable deterioration of the other parameter is given by the
improvement of the first one; if the improvement of one of the two parameters is
instead greater than the threshold value, then the highest acceptable deterioration is
the threshold itself. This technique allows us to avoid the selection of a set of good
classifiers that make mistakes over the same subspace of the instances; it is illustrated
in Figure 2.

In settling on this means of combining error and ambiguity in determining
ensemble members we considered several alternatives; an evaluation of some of these
is shown in Table 3. This table shows four columns of results for ensembles of size
13, 17 and 21. For the first column (HC (E)) the ensemble members were selected
using error only. For the second, the selection was based on error minus ambiguity in
the manner of Krogh and Vedelsby’s (1995) work. The third is the same as the
algorithm described in Figure 2 but without the threshold conditions. The fourth
column shows results for the algorithm shown in Figure 2. Clearly, the threshold
approach work best. The E-A approach does not work so well because there is no
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basis for assuming that diversity has such a direct effect in classification. The
technique without a threshold fails because sometimes improvements in ambiguity (or
error) come at too high a cost in error (or ambiguity). Introducing the threshold
overcomes this problem.

generate a random ensemble of feature subsets;
do {
for every classifier i in the ensemble {
calculate initial error E; and contribution to ambiguity A;;
for every bit j of the mask {
flip j* bit of i mask;
calculate new E;' and new A/';
if { {[E/'<E;]AND
[ [( E/<(1-Thresh ) x E; ) AND (A;/>(1-Thresh) x A;)] OR
[(E/ >(1-Thresh ) x E; ) AND (A/> E//E; x A;) ] ] } OR
{ [A/ >A;] AND
[ [(A/= (14+Thresh )x A;) AND (E/<(14+Thresh )xE; )] OR
[(A/ < (14+Thresh )x A;) AND (E/<A// A; xE; ) ] 1} }
E=E/;A;=A/; /flip accepted
else flip back j” bit of i" mask; /flip rejected
}
}

} while there are changes in the masks AND not maximum number of iterations;
calculate final ensemble prediction;

Fig. 2. AmbHC: The algorithm for generating ensembles while emphasising diversity in
ensemble members.

Table 3. Results of different alternatives for combining error and ambiguity in selecting
ensemble members (the UCI Heart data was used).

Ens Size HC (E) E-A AmbHC AmbHC
(NoThresh)

Heart 13 17.7 18.8 17.8 17.2
17 17.3 17.3 17.8 17.2

21 17.7 18.1 19.7 16.9

Pima 13 25.0 25.7 26.0 24.5
17 25.0 24.1 25.1 24.1

21 24.6 24.7 25.8 23.8

Warfarin 13 7.8 7.9 8.1 7.8
17 7.6 8.0 8.8 7.4

21 8.0 7.4 8.0 7.3

We have run the algorithms on three datasets; two available from the UCI
repository (Pima Indians, Heart Disease) and the Warfarin data-set described in
(Byrne et al., 2000). These were chosen on the basis of the following criteria:

e we have restricted our experimental comparison to 2-class datasets, turning a
problem into a 2-class classification task if necessary, and have left the n-classe
case for further research;
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e we have considered datasets which do not have a skewed class distribution, as
simple 0/1 error measures are questionable for datasets with very unbalanced
class distributions.

In the next section we present a complete comparison of the results obtained by two
of these algorithms, the basic hill-climbing error-only algorithm (HC) and AmbHC;
below we give some further details about the AmbHC algorithm.

4. Evaluation and Discussion

We present in this section a complete comparison of the HC and AmbHC selection
strategies. We show that if the ensemble members are forced to be diverse then a
better ensemble accuracy can be achieved with ensemble members that have poor
overall accuracy, provided we include a sufficiently high number of classifiers in the
ensemble. Also, these diverse ensemble members prove to have fewer features than
ensemble members selected without consideration for diversity.

For each dataset we have run the two algorithms described in the previous section
(HC & AmbHC), varying their initial ensemble size. For each ensemble size we have
also repeated the process with 4 different starting points (initial sets of feature masks),
averaging the results obtained, as the hill-climbing strategy is quite sensitive to the
initial condition. The scoring of any ensemble is determined using a 5-fold cross
validation; in the 5-fold cross validation the data is divided into 5 parts and the
ensemble is tested on each part in turn having been trained on the other 4 parts. The
training involves the search processes described in Figures 1 & 2 and the fitness is
determined using leave-one-out testing. The results are then averaged over the 5
validation sets. The threshold used for the AmbHC algorithm was set for all the
datasets at 2.5%.

The evaluation on the three datasets shows that the ensembles trained with the
AmbHC algorithm (higher diversity) have lower generalization errors than those
trained with the simple HC, provided the size of the ensemble is sufficiently large (see
Figures 3. Because of the nature of the ensemble training process HC ensembles have
corresponding AmbHC ensembles allowing us to use a paired #-test to test the
hypothesis that the AmbHC ensembles have lower error. We have randomly selected 9
different ensembles in each of the three datasets and performed a paired #-test; the
results gave a confidence of >80% for Warfarin, and >95% and >99% for Heart and
Pima sespectively. These figures are very satisfactory - the weaker figure for Warfarin
is probably accounted for by the small impact of the ensemble given the already low
error of the individual classifiers. This is the first main result of our study: the
algorithm that takes into account diversity while selecting ensemble outperforms the
simply error-only strategy.

In the following two tables we focus on some other aspects of the comparison
between classifiers trained with the two different algorithms. In Table 4 we show, for
each dataset and for both the algorithms, respectively the error obtained by the best
ensemble, the average error and the average ambiguity of the single classifiers in the
ensembles.

In Table 5 we show instead, for each dataset, respectively the total number of
features and the average number of features of the masks trained with HC and with
AmbHC.
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As we can see from Table 4, the classifiers in the ensemble selected with the
AmbHC algorithm have a higher average error than those selected by the simple HC
algorithm: the increase in ambiguity (diversity) comes at the cost of significantly
higher errors in the ensemble members. It seems to us that the only way to account for
the improvement in overall performance in the face of deterioration of the ensemble
members is that the members are local specialists. In fact, the use of ambiguity in the
AmbHC algorithm means that the ensemble selection is made by choosing classifiers
that disagree on a higher number of elements compared to those ones selected without
ambiguity. For the first ones, the higher average ambiguity seems to compensate their
higher error by ‘distributing’ the prediction of the different individuals over more
diverse regions of the space of the instances; as a result we get a lower ensemble
error.

Pima Indians
27
_ 265 (o
g 26 —X—AmbHC
w255
3 25 —
5 24
23.5
23 T T T T T
0 5 10 15 20 25 30
Ensemble Size
Heart Disease Warfarin
19 9
8.5
s Eel | ESES
E " \ X\M 375 \’<v
E17.5 ~ g -g 7 X
o [
ugJ 17 P— 565 —+—HC ‘
165 6 —X—AmbHC
16 . . . . . 5.5 T T T
0 5 10 15 20 25 30 0 10 20 30 40
Ensemble Size Ensemble Size

Fig. 3. Generalization error of different ensemble sizes on the Pima, Heart and Warfarin data.

This view is reinforced by another interesting result: the ensemble members
produced using ambiguity have fewer features on average than the others (Table 5). It
seems reasonable that fewer features are required to discriminate in these local
regions. This observation also suggests a new perspective on the knowledge discovery
aspect of feature selection. It may be useful to reconsider this as a process of finding
the best ensemble of local feature subsets rather than a global feature subset.
However, the problem remains that if the ensemble is performing a problem space
decomposition then it is doing so implicitly and the decomposition is not accessible.
An interesting avenue for future research will be to use clustering to see if meaningful
regions of the problem space can be identified where ensemble members specialize.
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Table 4. A summary of all the evaluations showing the best ensemble generated for each data
set and showing the corresponding average member error and ambiguity.

Data Algorithm Best Ensemble Average Error Avg. Ambiguity

Pima HC 24.6 27.0 13.7
AmbHC 23.4 31.5 22.3

Heart HC 17.4 21.8 12.2
AmbHC 16.6 24.8 18.8

Warfarin HC 7.6 8.6 33
AmbHC 6.9 14.1 10.6

Table 5. The ensembles built using AmbHC have significantly less features on average that
those built using the default search algorithm.

Data Total Average: HC Average: AmbHC
Pima 8 4.8 3.5
Heart 13 7.4 6.0
Warfarin 22 12.9 10.7

The local learners hypothesis helps us also in explaining the behaviour shown in
Figure 3, where, in each case, a minimum number of classifiers are needed for
AmbHC to surpass HC. Since classifiers trained with the AmbHC algorithm have a
higher average error than the ones trained with HC it is clear that each classifier will
cover (i.e. predict correctly) a ‘smaller’ region of the problem space. So, to have the
majority of the ensemble voting correctly we need a larger number of classifiers.
Then, when the ensemble size is small (e.g. 5) even though we do not use diversity (in
the HC algorithm) it is very probable that a set of classifiers randomly chosen has its
own ‘natural’ diversity. As we increase the ensemble size, it becomes more probable
that new members of HC ensembles will be similar to existing ones. While with the
AmbHC algorithm diversity is still emphasized and variety is maintained. Thus, a
diverse bunch of good classifiers outperforms a bunch of very good classifiers with
less diversity.

However, as mentioned in section 2 when discussing the Condorcet Jury Theorem,
this addition of new diverse members does not continue to deliver benefit
indefinately. At best, it will not continue to be possible to find more diverse members
and the reduction in error will bottom out. What is happening in the three examples
here is actually slightly worse than that in that an overfitting effect is evident. Since
the selection of the ensemble members is a training process there is the potential for
the ensemble as a whole to overfit the training data and that is clearly evident in the
three graphs shown here. So with this AmbHC approach there is an optimal ensemble
size which apperars to be between 25 and 30 for these data sets. It seems that the best
way to address this overfitting would be to use a cross validation process to determine
a best ensemble size.

s. Conclusions and Future Work

In this paper we have compared two approaches for selecting an ensemble of
classifiers: a simple error-only strategy, where a group of independently ‘good’
classifiers is first selected and then aggregated, and a strategy which considers, during
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the training process, every classifier in the context of the ensemble and selects a group
of classifiers with a high degree of diversity. We have focused our attention on
ensembles of classifiers where diversity derives from different ensemble members
using different feature sub-sets.

Since the objective of the evaluation has been to assess the feature selection
strategies the comparison has been done using a simple hill-climbing search strategy.
The strategies could be employed in a more comprehensive search algorithm such as a
genetic algorithm or beam search.

Since there is a clear trade-off between diversity and error in the selection of the
ensemble members the key question was; would diverse ensembles of (possibly) less
accurate classifiers outperform ensembles of good classifiers with perhaps less
diversity. The answer to this has proved to be ‘yes’ but it does depend on the careful
management of the tradeoff between error and ambiguity that is implemented in the
AmbHC algorithm as described in Figure 2.

This is interesting because it highlights something of a paradox associated with
ensembles. It shows that it can be a good thing to have a committee of experts
consistently voting 5 : 4 in favour of a prediction rather than 8 : 1. In fact, we are
proposing selecting experts in a manner that will push down consensus in the
committee. Intuitively, this is not what you want from a committee of physicians
discussing your particular illness! You would like the committee of physicians to
agree. A resolution of this paradox is as follows. If the committee members are very
accurate there is little benefit in diversity; indeed there is little benefit in ensembles in
classification tasks where accuracies of >93% (say) are achievable with a single
classifier. However, ensembles make sense where individual classifiers have
significant errors (say > 15%). In such cases, instead of adding a new very accurate
committee member that makes the same errors as existing members in the ensemble it
is sensible to add a member that makes different errors, one that has a different set of
competences. There is no benefit in adding members that will change votes of 8:1 to
9:1.

Perhaps the most interesting finding of this research is the fact that the ambiguity-
focused learners have less features and the implication that these ensemble members
are local learners. This may prove useful in understanding the contribution of
ensembles in reducing error and may lead to an increase in the interpretability of
ensembles. This will be the subject of our future research.
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