
Formally-Based Design Evaluation

Kenneth J. Turner and Ji He

Computing Science and Mathematics, University of Stirling, Stirling FK9 4PU, Scotland
kjt@cs.stir.ac.uk, h.ji@reading.ac.uk

Abstract. The paper investigates specification, verification and test generation
for synchronous and asynchronous circuits. The approach is called Dill (Digital
Logic in Lotos – the ISO Language Of Temporal Ordering Specification). Rela-
tions for (strong) conformance are defined to verify a design specification against
a high-level specification. Tools have been developed for automated testing and
verification of conformance between an implementation and its specification.

1 Introduction

Dill (Digital Logic in Lotos [5]) is an approach for specifying digital circuits using
Lotos (Language Of Temporal Ordering Specification [4]). Dill allows formal speci-
fication of hardware designs, represented using Lotos at various levels of abstraction.
Dill deals with functional and timing aspects, synchronous and asynchronous design.
There is support from a library of common components and circuit designs. Analysis
uses standard Lotos tools. Among Hardware Description Languages, Dill most closely
resembles Circal (Circuit Calculus) in that both have a behavioural basis in process al-
gebra. In the authors’experience, Dill can be used successfully at a variety of abstraction
levels where Circal appears to be less effective.

Lotos is a formal language standardised for use with communications systems. Dill,
which is realised through translation to Lotos, is a substantially different application
area for this language. Lotos is neutral with respect to whether a specification is to
be realised in hardware or software, allowing hardware-software co-design. Lotos has
well-developed theories for verification and test generation.

The current standard for Lotos does not support quantified timing, although the
authors have developed Timed Dill for hardware timing analysis using ET-Lotos (En-
hanced Timed Lotos). However, asynchronous circuits are also of interest. Like Dill,
other asynchronous verification approaches define relations that judge correctness of a
circuit design. However it is not possible to detect deadlocks and livelocks with confor-
mance [1] and decomposition [2]. Although strong conformance [3] can do this, it does
not work for non-deterministic specifications. The relations confor and strongconfor
mentioned in this paper resolve these problems.

For validating hardware designs, test cases are in practice manually defined or are
randomly generated. More rigorous approaches use traditional software testing tech-
niques or state machine representations. In Dill, tests are derived from higher-level
specifications in a novel adaptation of protocol conformance testing theory.

T. Margaria and T. Melham (Eds.): CHARME 2001, LNCS 2144, pp. 104–109, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Formally-Based Design Evaluation 105

2 Synchronous and Asynchronous Circuit Models

Dill supports logic designs at different levels of abstraction, with formal comparison
of higher level and more detailed design specifications. A component’s ports (e.g. its
pins) are represented by Lotos event gates. To ‘wire up’ two ports, their Lotos gates
are merely synchronised.

The classical synchronous circuit model has combinational logic to provide the
primary outputs and the internal outputs according to the primary inputs and the internal
inputs. Internal outputs are then fed into state hold components to produce the internal
inputs. Dill incorporates this practice into its synchronous circuit model, assuming that
the primary inputs have already been synchronised with the clock signal.

For a synchronous circuit, designers must ensure that the clock cycle is slower than
the slowest stage in a circuit. This can be done by analysing the timing characteristics
of components used in the circuit. The Dill model is constrained according to the
environment in which it operates. If the clock is slow enough to let every signal settle
down, it is reasonable to allow the value of each signal to change just once per clock
cycle. Dill also requires that there be no cyclic connection within a stage, and storage
components have to be specified in the behavioural style.

Some of the better-known asynchronous design methods handle delay-insensitive,
quasi delay-insensitive or speed-independent circuits. Dill deals with (quasi) delay-
insensitive and speed-independent circuits since they assume unbounded delays that
are appropriate for Lotos. (Quasi) delay-insensitive designs can be easily changed to
speed-independent circuits by inserting artificial delay components. Asynchronous Dill
concentrates mainly on speed-independent design. Happily this is a good match to the
Dill approach since component delays are unbounded, just like the interval between
consecutive Lotos events. If new inputs cannot change any pending outputs, the design
is termed semi-modular. Semi-modularity is often used as a correctness criterion for
speed independence.

A specification is said to be input-receptive if every input is allowed in every state.
In such a case, the Dill model represents the real circuit faithfully. An input quasi-
receptive specification can be obtained by adding a choice when there is a potential
output. It is not straightforward to transform a Lotos specification with more than just
sequence and choice operators into input quasi-receptive form. Internal events must
first be determinised (i.e. internal non-determinism is removed). Outgoing edges are
then added to create input quasi-receptive specifications. Since it can be hard to extract
an input quasi-receptive environment from a behavioural specification, relations are
defined that respect the difference between input and output. These relations do not
require a (quasi-)receptive environment or implementation, and are natural criteria for
asynchronous circuit correctness.

3 Conformance Testing and Verification

Conformance testing is a term drawn from communications systems to mean evaluating
the correctness of an implementation against its specification. To formally define an im-
plementation relation, a test hypothesis is needed that implementations can be expressed

106 K.J. Turner and J. He

by a formal model, Dill describes behaviour using an IOLTS (Input-Output Labelled
Transition System) whose actions are partitioned into inputs and outputs.

Several implementation relations have been defined to express conformance of an
implementation to its specification. The authors have defined the confor (conformance)
relation to require that, after a suspension trace of the specification, the outputs that
an implementation can produce are included in what the specification can produce. A
second implementation relation strongconfor (strong conformance) is also defined. This
is similar except that output inclusion is replaced by output equality. Normally confor
is used for a deterministic specification and implementation, while strongconfor is used
when an implementation is more deterministic than a specification. The verification tool
VeriConf developed by the authors checks the (strong)confor relations.

The ioconf relation (input-output conformance) has been defined to reflect the input-
output relationship between an implementation and its specification. Suppose that sp is
a state of the specification and that im is the corresponding state in the implementation.
If sp can produce output op, a correct implementation should also produce it. If sp
cannot produce a certain output, neither should the implementation. However when a
specification is allowed to be non-deterministic, it is too strong to require im to produce
exactly the same outputs as sp. A suitable relation should thus require output inclusion
instead of output equality. Unfortunately a circuit that accepts everything but outputs
nothing would also be qualified as a correct implementation. The overcome this problem,
a special ‘action’ δ is introduced for quiescence, meaning the absence of output. Like
any other output, if δ is in the output set of im it must be in the output set of sp for
conformance to hold. That is, im can produce nothing only if sp can do nothing.

The Dill approach allows a design specification to be formally checked against
an abstract specification. The same approach also allows test suites for an implemen-
tation to be rigorously derived from its specification. A circuit is specified in Lotos
(whose semantics is given by an LTS – an ordinary Labelled Transition System). The
implementation of the same circuit is described by VHDL.

To support the checking of conformance, an intermediate LTS termed a suspension
automaton is built from the specification LTS. The suspension automaton of an LTS
is obtained by adding self-loops for all quiescent states (δ ‘actions’ where no output
is pending). The resulting automaton is then determinised. Checking conformance is
reduced to checking trace inclusion on the suspension automaton. A test case has finite
deterministic behaviour that ends with states labelled Pass or Fail to indicate the verdict
of conformance. The test cases generated by Dill have the form of traces to allow easy
measurement of test coverage and automatic execution of test cases. The strategy is to
cover all transitions in a transition tour that addresses the Chinese Postman problem.

Tests are generated from a suspension automaton by an algorithm that offers three
choices in each iteration. The first choice terminates test generation. Since specifica-
tions usually have infinite behaviour, test generation has to be stopped at some point.
The second choice gives the next input to the implementation. Since inputs are always
enabled, this step will never result in deadlock when an input is applied. The third choice
checks each possible next output of the implementation. Any implementation producing
an unexpected output will result in a Fail terminal state, indicating a non-conforming
implementation. For all other outputs, test generation may continue.

Formally-Based Design Evaluation 107

This test generation algorithm guarantees sound and exhaustive test cases for the
ioconf relation. The authors have developed the TestGen tool to realise this algorithm.
Each generated transition tour is a test case and is saved in a test file. A testbench was
designed to allow the test cases to be applied and executed against the VHDL description
of the circuit.

4 Case Studies

4.1 Bus Arbiter

The Bus Arbiter is a benchmark circuit used to exercise hardware verifiers. Normally the
arbiter grants access to the highest priority client: the one with the lowest index number
among all the requesting clients. However as requests become more frequent, the arbiter
is designed to fall back on a round-robin scheme so that every requester is eventually
acknowledged. This is done by circulating a token in a ring of arbiter cells, with one cell
per client. Although the Bus Arbiter has been studied by many researchers, as far as the
authors know there has not been a formal specification of the arbitration algorithm used
in the design. With Lotos, it is possible to provide such a higher-level specification..

The formulation of properties uses action-based temporal logics ACTL (Action-
based Computational Tree Logic [6]) and HML (Hennessy-Milner Logic). The following
three properties have to be proved for the circuit: no two acknowledge outputs are asserted
in the same clock cycle (safety); every persistent request is eventually acknowledged
(liveness); and acknowledge is not asserted without request (safety). To verify the higher-
level specification against the temporal logic formulae, the LTS of the specification was
produced first. Generation and minimisation of the LTS take a few seconds on a 300 MHz
Sun. The temporal logic formulae are then verified against the minimised LTS within a
minute.

To check the lower-level specification, the design of the arbiter was divided into
pieces – one per cell of the arbiter. An LTS which is safety equivalent to the Lotos spec-
ification of the design was generated in about seven minutes. The two safety properties
were verified to be true against this LTS, implying that the design also satisfies these
properties. Verification of the formulae took just seconds. However generating an LTS
that is branching equivalent to the design took almost one day, after which the liveness
property was also verified to be true.

For checking equivalence between the higher-level algorithm and the lower-level
design, compositional generation was exploited to generate the LTS for the design. This
took about eight minutes to calculate. In fact this LTS is not observationally equivalent to
the one representing the higher-level specification. It was found that the circuit does not
properly reset the override out signal. This is a fault in the supposedly proven benchmark
circuit. The design was modified and then verified to be observationally equivalent to
the higher-level algorithmic specification.

4.2 Black-Jack Dealer

The Black-Jack (Pontoon, Vingt-et-Un) Dealer is another verification benchmark circuit
[7]. It is a synchronous circuit whose inputs are Card Ready and Card Value. Its outputs

108 K.J. Turner and J. He

are boolean: Hit (card needed), Stand (stay with current cards) and Broke (total exceeds
21). Aces have value 1 or 11 at the choice of the player. Using the authors’ TestGen
program, a test suite for the Black-Jack Dealer was derived. The test suite is able to test
181 different hands of cards that a dealer may hold. The VHDL implementation given
in [7] was evaluated against this test suite.

Although the circuit was expected to pass the test suite, a Fail verdict was recorded
after the dealer was given the following cards: 5, 5, 3, 2, 1, 10. The circuit should initially
take an Ace as 11. This should be re-valued as 1 the first time the result would be Broke.
But the given design continues to re-value the Ace card. Carefully simulating the circuit
discovered a problem in the benchmark with one of the flag registers that indicates anAce
should be 11. By slightly modifying the circuit to remove the cause of a short duration
pulse, the circuit was enabled to pass the test suite successfully.

4.3 Asynchronous FIFO

As a typical asynchronous circuit, an asynchronous FIFO buffer was specified and anal-
ysed. The FIFO has two inputs InT, InF and two outputs OutT, OutF. Its inputs and
outputs use dual-rail encoding in which one bit needs two signal lines. The Req input
comes from the environment of a stage, indicating that the environment has valid data to
transfer. The Ack output goes to the environment, indicating that the stage is empty and
ready for new data. The implementation uses two C-Elements (transition synchronisers
used in asynchronous circuits). To ensure the FIFO works correctly, the environment
has to be coordinated. It is convenient to think about the environment in two parts: EnvF
(front-end) produces data, while EnvB (back-end) consumes it.

It was verified that the specification satisfies the following property: if there is an
input of 1, then the output will eventually become 1 (and similarly for input/output of 0).
It was verified that Spec ≈ Impl || (EnvB |[· · ·]| EnvF), where ≈ denotes observational
equivalence.

When speed independence needs to be verified, each building block (including the
environment) should be specified in the input quasi-receptive style (QR). It was verified
that Spec ≈ Impl QR || (EnvB QR |[· · ·]| EnvF QR), which gives more confidence in
the design of the FIFO. The liveness property is also satisfied by the implementation
Impl QR || (EnvB QR |[· · ·]| EnvF QR).

It was also shown that Impl QR || (EnvB QR |[· · ·]| EnvF QR) strongconfor Spec
using the VeriConf tool. The TestGen tool builds a single test case of length 28:

InF !1 InF !0 OutF !1 InF !1 OutF !0 OutF !1 InF !0
InT !1 OutF !0 InT !0 OutT !1 InT !1 OutT !0 OutF !1
δ InF !0 OutF !0 InT !1 OutT !1 InT !0 InT !1
OutT !0 OutT !1 δ InT !0 OutT !0 δ Pass

4.4 Selector

A selector (an asynchronous design component) allows non-deterministic choice of
output. After a change on input Ip, output Op1 or Op2 may change depending on the
implementation. The TestGen tool produces a single test case of length 11 for the selector.

Formally-Based Design Evaluation 109

This example shows how test branches are marked. After Ip !1, the output Op1 !1 is
marked with the current state (�S1) since an implementation may also do Op2 !1. A
selector that insists on sending its input to Op1 can follow the first row of steps in the
test case below. After the sixth step (Ip !1), it cycles back to the second step (Op !1) – a
loop that the testbench must break.

Ip !1 Op1 !1 (�S1) Ip !0 Op1 !0 (�S2) δ Ip ! 1
Op2 !1 (�S1) δ Ip !0 Op2 !0 (�S2) Pass

5 Conclusion

An approach to specifying synchronous circuits has been presented. This has allowed
standard hardware benchmarks to be verified – the BusArbiter and the Black-Jack Dealer
in this paper. The authors were pleasantly surprised to find that their approach discovered
previously unknown flaws in these circuit designs.

An approach to specifying asynchronous circuits has also been presented. (Quasi)
delay-insensitive circuits are transformed into speed-independent designs. Violations of
speed-independence (or rather, semi-modularity) are checked using specifications that
are input (quasi-)receptive. The (strong)confor relations have been defined to assess the
implementation of an asynchronous circuit against its specification.

The correctness of a Dill specification can be easily checked by simulation tools.
The TestGen tool generates test suites using transition tours of automata. This allows
automatic generation of test suites for reasonable coverage, and also allows testing of
non-deterministic implementations. The VeriConf tool was developed to support the
(strong)confor relations.

References

1. D. L. Dill. Trace Theory for Automatic HierarchicalVerification of Speed-Independent Circuits.
ACM Distinguished Dissertations. MIT Press, 1989.

2. J. C. Ebergen, J. Segers, and I. Benko. Parallel program and asynchronous circuit design.
In G. Birtwistle and A. Davis, editors, Asynchronous Digital Circuit Design, Workshops in
Computing, pages 51–103. Springer-Verlag, 1995.

3. G. Gopalakrishnan, E. Brunvand, N. Michell, and S. Nowick. A correctness criterion for
asynchronous circuit validation and optimization. IEEE Transactions on Computer-Aided
Design, 13(11):1309–1318, Nov. 1994.

4. ISO/IEC. Information Processing Systems – Open Systems Interconnection – LOTOS – A Formal
Description Technique based on the Temporal Ordering of Observational Behaviour. ISO/IEC
8807. International Organization for Standardization, Geneva, Switzerland, 1989.

5. Ji He and K. J. Turner. Dill (Digital Logic in Lotos) project web page.
http://www.cs.stir.ac.uk/˜kjt/research/dill.html, Nov. 2000.

6. R. D. Nicola and F. Vaandrager. Three logics for branching bisimulation. In Proc. 5th. Annual
Symposium on Logic in Computer Science (LICS 90), pages 118–129. IEEE Computer Society
Press, 1990.

7. D. Winkel and F. Prosser. The Art of Digital Design. Prentice-Hall, Englewood Cliffs, New
Jersey, USA, 1980.

http://www.cs.stir.ac.uk/~kjt/research/dill.html

	Introduction
	Synchronous and Asynchronous Circuit Models
	Conformance Testing and Verification
	Case Studies
	Bus Arbiter
	Black-Jack Dealer
	Asynchronous FIFO
	Selector

	Conclusion

