
An RMM-Based Methodology for Hypermedia
Presentation Design

Flavius Frasincar, Geert Jan Houben, and Richard Vdovjak

Eindhoven University of Technology
Eindhoven, The Netherlands

{flaviusf, houben, richardv}@win.tue.nl

Abstract. Due to the rapid growth of the Web, there is an increasing
need for methodologies that support the design of Web-based Informa-
tion Systems (WIS). After investigating the application of existing hy-
permedia design methodologies in the context of automated hypermedia
presentation design we propose a specification framework for this con-
text. The framework considers the possibility of dynamically gathering
information from a collection of structured, but also possibly heteroge-
neous sources (relational or object-oriented databases, XML repositories
etc.). The methodology associated with the framework shows two levels
of abstraction: the logical level, and the presentation level. At the logical
level the application diagram captures the design of slices, thus specifying
the content related grouping of data elements and their relationships. At
the presentation level, the presentation diagram bridges the logical level
and the actual implementation by specifying how the design of slices is
translated into hypermedia mechanisms, e.g. hyperlinks.

1 Introduction

From its introduction in the early 90’s the World Wide Web (WWW) is in a
continuous development. Its rapid expansion results in an increasing number
of Web-based Information Systems (WIS) [3] being developed, especially with
sources that contain frequently changing information such as databases (rela-
tional or object-oriented databases, XML repositories etc.). This leads to the fact
that there is a higher need to automate, at least partially, the design process of
hypermedia presentations as used in a WIS. Although there are methodologies
like Relationship Management Methodology (RMM) [1] and Object Oriented
Hypermedia Design Methodology (OOHDM) [2], these methodologies have been
originally developed for a manual hypermedia design process, they are not par-
ticularly well-suited in the context of automated hypermedia design.

RMM focuses on highly structured applications with high information volatil-
ity. Moreover, it provides guidelines that can facilitate the automated design
process of hypermedia applications. RMM is based on the popular Entity Rela-
tionship (E-R) model.

These characteristics are significant for our target application area where
sources contain dynamical information. RMM has a specification at the logical

level, which groups presentation issues (e.g. navigational links) with semantical
issues (e.g. slice attributes). Besides, it lacks a proper specification at the pre-
sentation level. In this paper we argue that the separation in two distinct levels
is useful and we address them both in the context of the proposed framework.

The results of this research will be exploited in the HERA [12] project that
investigates software architectures for the generation of presentations for (semi-
structured) data retrieved from heterogeneous data sources. In order to exper-
iment with the proposed methodology a prototype has been built. The proto-
type uses XML to store the data and XSL to specify transformations between
consequent steps. Similar model-driven Web systems inspired by Hypermedia
Design Methodology (HDM) [7] were developed in Autoweb [6] (uses relational
databases for data storage) and WebML [5] (uses XML for data storage) projects.

Part of this work is also embedded in the Dynamo project, in which Eind-
hoven University of Technology collaborates with Philips and CWI, both in the
Netherlands. The Dynamo project targets the (semi-)automatic generation or
design of multimedia presentations. Characteristic for the generation process is
the support for adaptation.

As results from [4], [10] show, adaptation can be specified by distinguishing
the domain model, the user model, and the adaptation model. The last model
describes the actual adaptation being performed (based on the assumed knowl-
edge of the user inferred from the user model). In terms of this project it means
that conditions are specified on the existence of objects that are part of the
presentation.

2 RMM

RMM [1], [11], [13], [14], [15] proposes a sequence of steps that have to be followed
in the design process. For each step there are design guidelines for the designer
or builder of the application. Figure 1 depicts the RMM steps that are reused
in the proposed framework.

Requirements
 Analysis

 E-R
 Design

 Application

 Design

. . .

Fig. 1: RMM design methodology

The first design step is to represent the application domain using traditional
E-R modeling techniques.

In the second step, the E-R model is enriched with the concepts of m-slices
and relationships to build a diagram that describes the application. M-slices

[13] are created by grouping together attributes from the E-R diagram; this
can be done hierarchically using previously defined m-slices: the ’m’ comes from
’Matreyshka’, the nested Russian doll, suggesting the possibility to nest slices in
one another. In the rest of the paper we will use the term slice instead of m-slice.
The most simple type of m-slice is an attribute ensuring thus the uniformity of
the hierarchical slice model.

3 Methodology

We developed a specification framework based on RMM to support the automa-
tion of a hypermedia presentation design. Figure 2 illustrates the methodology
related to this framework.

Although requirements analysis, E-R diagram (domain analysis), and imple-
mentation are important phases in the software engineering life cycle they are
beyond the scope of this paper.

The arrows in Fig. 2 show the sequence of steps in the process 1. Our method-
ology focuses on the design steps shown in the shaded area of Fig. 2: platform
independent application design, platform dependent application design, and pre-
sentation design.

The artifacts of each design step in the order in which they appear in the
methodology are:

– E-R diagram
– platform independent application diagram
– (platform dependent) application diagram
– presentation diagram

A platform independent application diagram presents common information
of application diagrams that is going to be displayed regardless of the platform.
A platform dependent application (also referred as application diagram) takes
into consideration a particular hypermedia platform.

Requirements
 Analysis

 E-R
 Design Design

 Plat. indep.
Application

Design
 Application

Plat. dep.
Presentation

Design
Implementation

Logical level Presentation level

Fig. 2: Design methodology

In the methodology we distinguish two levels, the logical level and the pre-
sentation level, based on the ’separation of concerns’ principle.
1 It is possible to have feedback loops in the process.

3.1 Logical Level

At the logical level the methodology is concerned with providing data and re-
lationships/access structures of the information to be presented. Related in-
formation is grouped together into meaningful presentation units (slices). Slice
relationships provide a means to access information belonging to different units.
The logical level is based on the E-R model, in the sense that it exploits the
entity structure (attributes) and the relationships among them.

Relationships derived (based on relation’s transitivity) from the E-R model
are taken into account to minimize the number of slice relationships that need
to be traversed in order to reach a meaningful item related to a presentation
unit.

The logical level bridges the data source level and the presentation level. The
designer is concerned with mapping elements from the data sources (at abstract
level entities from E-R model) to slices.

Besides structuring information the notion of slice facilitates reuse. A slice
can be reused at application level or even among applications if the applications
share the same data model. At application level a previously designed slice can
be nested in another slice so that the design effort involved in a new slice creation
is considerably reduced.

The logical level is expressed in the application diagram which will be de-
scribed in Sect. 4.

3.2 Presentation Level

The design choices made at the logical level yield a presentation specification
in terms of slices. Such a specification however, stays at the logical level and
does not describe the presentation in detail. It does not say anything about
how presentation elements should be organized with respect to each other or
with respect to the screen; it says neither when, nor in which order presentation
elements should appear. These kinds of design decisions were usually made ad
hoc during the implementation phase, though they clearly do not belong there.

The presentation level bridges the logical level and the actual implementa-
tion. Complementary to the logical level, where the designer is concerned with
organizing the overall presentation structure and identifying what attributes
from entities are to be included in slices, at the presentation level the designer
specifies how and when the identified slices should be displayed.

The presentation level should not be considered only as a detailed logical level
but rather as a view from a slightly different angle. During this process, slices
from the logical level are mapped into regions and design decisions are made
to specify a concrete way (navigational, spatial, and temporal) [9] how rather
abstract slice relationships will appear in the presentation. In other words the
designer specifies in a conceptual way the navigation, layout, and timing of the
presentation.

The presentation level is expressed by means of the presentation diagram
which will be described in Sect. 5.

4 Application Diagram (AD)

The application diagram is used to model at the logical level the hypermedia
application [15]. An application diagram consists of slices and the relationships
among them.

In order to illustrate the framework specification an example of a virtual Web
site that presents information about a set of real-estate agencies is used.

Figure 3 describes the underlying E-R diagram without attributes. The appli-
cation domain is simplified in order not to burden the reader with too many ap-
plication details. In the example we introduce four entities, house agency, house,
neighbourhood, and room, and three relationships, expressing that a house is
owned by a house agency, it is placed in a certain neighbourhood, and contains
several rooms. All relationships are of type one-to-many.

contains

in_neighbourhood

is_owned

house

room

neighbourhood

agency

Fig. 3: E-R diagram

4.1 Slices

The application diagram is based on the concept of slice, which groups together
attributes and possibly other slices. Each slice belongs to an entity and it can also
contain attributes or slices from other entities. Slices provide flexible aggregation
and contextual navigation, useful features for intelligent Web navigation.

Slices are linked together with slice relationships. Access structures (e.g. in-
dex, tour, indexed guided tour) are used to build complex internal slice struc-
tures. Relationships/access structures have associated conditions 2 that show
what slice instances are to be connected.
2 A user adaptation module can use these conditions in order to inhibit or to allow

certain links based on the knowledge a user has regarding a certain concept.

The application diagram consists of all the designed slices and provides a
global view of the application.

Figure 4 presents a slice (as it is in RMM) which is an element of the larger
application diagram.

full_address

plan

house

neighbourhood

infoinfo
Index

room

name

overview

in_neighbourhood is_owned contains

address

neighbourhood room

name

agency

Fig. 4: Slice

4.2 Slice Relationships

Slices are linked together by relationships. A slice relationship associates slices
(belonging possibly to different entities) some being sources and others targets.
A simple slice relationship connects just two slices while a complex slice relation-
ship connects multiple slices. Each slice relationship can be have conditions (logic
predicates) that determine which instances of an entity are to be accessed. Con-
ditions support user and platform adaptation. Figure 5 (left) presents a simple
slice relationship.

Source

AND

OR

Target

OR

AND

Source

AND

OR

Target

OR

AND

Source

AND

OR

Target

OR

AND

Slice relationship

condtion

Fig. 5: Slice relationship. Sources and targets for slice relationship

Figure 5 (right) depicts the possible types of sources and targets of a slice
relationship. We distinguish the following cases:

– simple source/target

– multi-and source/target, all sources/targets must be triggered/invoked

– multi-or source/target, at least one of the sources/targets is triggered/invoked

One can observe that the proposed notation has as consequence that an ’OR’
for sources has the same graphical representation as an ’AND’ for targets (and
the other way around).

The RMM slice relationship is a navigational relationship (hyperlink) be-
tween two slices. In our application diagram a slice relationship represents nav-
igational, spatial, or temporal relationships at a higher level of abstraction. In
RMM, slice relationships are always crossing the physical boundaries of a slice.
In the proposed framework we allow slice relationships to be embedded in one
slice (we call them internal slice relationships). In the case of internal slice rela-
tionships the source slice can vanish or can be preserved. Figure 6 presents the
associated graphical notation for the two cases.

Vanishing source relationship Preserving source relationship

Fig. 6: Vanishing source and preserving source slice relationship

Figure 7 presents a slice diagram that uses the newly introduced concepts of
internal relationships and preserving source relationship. The empty slice called
’h n’ is an anchor for two internal relationships (both the anchor and the target
belong to the more general ’description’ slice). This is an example of relationships
that are preserving their source (the bullet anchored on the empty slice). That
means that when such a relationship is traversed, the description slice context
is kept and the ’h n’ anchor is still present.

Index

h_n

Index

name

neighbourhood

name

address

agency

description

ownshouse_in_neigh.

info

house

address

neighbourhood

overview

house

h_n = houses and neighbourhoods

∀

Fig. 7: Slice

5 Presentation Diagram (PD)

Similarly as the logical level is described by means of an application diagram,
the presentation level is described by a presentation diagram. A presentation
diagram consists of presentation elements called regions and the relationships
among them. The presentation diagram specifies how the regions are organized
from the navigational, spatial, and temporal point of view. Figure 8 shows an
example of a presentation diagram composed from several regions.

agent.name agent.address
contact

Neghbourdoods"
"Houses and

description

ndx_neighb ndx_house

h_n

Fig. 8: Presentation diagram

During the process of creating the presentation diagram, the slices introduced
at the logical level are mapped to regions and possibly new regions are introduced
(it is not always a one-to-one mapping, some slices can be split to more regions
and vice versa).

Subsequently, slice relationships from the logical level are materialized with
navigational, spatial, or temporal relationships.

5.1 Regions

Regions, together with the relationships that interconnect them, are the main
building blocks of a presentation diagram. A region is defined as a collection of
attributes and possibly other regions. This recursive definition facilitates nested
regions thus providing a means to reuse regions in a component-like manner.
Every region is associated with an area where it is displayed. An area is of a
rectangular shape having as properties its dimensions and location. When we
refer to a region we mean both the region and its associated area.

As mentioned before, a region contains attributes. Attributes are properties
that relate concrete values (from a given domain) to the region. Attributes come
in two flavors: entity attributes and constant attributes. An entity attribute ac-
quires its value from the entity to which it is mapped and thus it changes its
value throughout the presentation. A constant attribute, as its name suggests,
does not change its value; the value is determined beforehand and stays con-
stant. Different syntax is used to differentiate the two types. Graphically, entity
attributes are depicted as solid line ovals and constant attributes as dashed line
ovals as shown in Fig. 8.

Note that though the concept of region is similar to the slice concept, there
are some differences:

– A slice is always associated with an entity that owns it, while a region, as
a presentation element, is not owned by an entity; it is sufficient that each
entity attribute includes the information from which entity it comes from.

– A region has an associated area where it is displayed.

5.2 Region Relationships

All aspects of the abstract concept of slice relationships introduced at the logical
level are used also at the presentation level with the difference that the sources
and the targets are regions, not slices. Moreover, three instances of this concept
are introduced: navigational, temporal, and spatial relationship. Each of them is
having a different syntax and different semantics associated with its realization.

Graphically, relationships are depicted as arcs with arrows. Similar to the
logical level, an arc starting with a solid circle indicates a persistent (not van-
ishing) source region. The graphical style of the arc indicates the type of the
relationship: navigational, temporal, or spatial as depicted in Fig. 9.

Spatial

Navigational

Temporal

Fig. 9: Types of relationships

Navigational. The navigational relationships were introduced to represent the
classical hyperlinks (so called ’click-able’ links). After the user clicks on the
source region the target region is invoked and the source region either vanishes
or stays, depending on its type.

There is a possibility to guard the execution of the link with a condition (the
link is followed only if the condition is satisfied) and the possibility to specify
an event when the link should be followed. The default event for navigational
links is the mouse-click event, but the designer can choose different events (e.g.
mouse-over). Navigational links are graphically depicted with solid arcs.

Temporal. Temporal relationships were introduced in order to express the no-
tion of time in the specification of multimedia presentations, while the original
RMM was focused on hypermedia presentations (no notion of time). Temporal
links can be used to describe both intrinsic delay (a duration of a video or au-
dio clip [8]) and presentation time (temporal links introduced by the designer).
There is a time-out event associated with every temporal relationship; after the
time elapses the relationship is realized (the destination region is invoked) 3.

Although from semantic point of view the temporal relationships can be
considered similar to the navigational links we suggest to make a distinction
mainly because of the different nature of the two (navigational links require
some user interaction while temporal links do not).

Temporal links can be organized in parallel or sequential compositions. The
graphical syntax is rather intuitive; temporal links are graphically described with
dashed arcs.

A sequential composition is depicted as a chain of links with one starting
node (starting source region) and a chain where the destination region of one
link is the source region for the next link.

Two temporal relationships are considered to be in parallel composition if
they are not included in the same sequential composition. In other words what
is not sequential is parallel.

Figure 10 shows an example of three sequential chains (A*, B*, C*) which
are organized into a parallel composition and synchronized before they enter the
region D. Note that normally the starting region from a sequence is shown at
once (A1, B1) but it is also possible to specify a delay with respect to the top
region (C1).

3 The synchronization can sometimes introduce an additional delay (the time-out of
one ’track’ elapses but it still has to wait for the other with which it is synchronized).

A1 A2

B1 B2

C1

D
E1 E2

F1

Top

Fig. 10: Sequential and parallel composition with synchronization

Spatial. There are two reasons for introducing spatial links: the first is to pro-
vide a means of specifying the layout characteristics of a presentation. The second
reason is to facilitate the description of more complex presentation elements like
indices, guided tours etc. A spatial link describes a spatial relationship between
two regions. The meaning of the link orientation is that the link describes a
relative position of the target with respect to the source, the point of reference
always being the left upper corner. The semantics of spatial links is slightly dif-
ferent compared to the one of navigational and temporal links. The notion of
following a link is missing here, e.g. both the source and the target of a spatial
link are displayed at once provided the condition and the event associated with
the link permit so.

Spatial links are graphically depicted with dotted arcs.

5.3 Multi-Dimensional Synchronization

Except of the synchronization of temporal relationships our framework offers also
multidimensional relationship synchronization where relationships of different
kinds are synchronized. This gives the designer the opportunity to specify new
types of dependencies among relationships. For example in Fig. 11 a navigational
link from the region ’Text’ is synchronized with a temporal relationship coming
from the region ’Audio’. The target region is invoked only after both events from
the involved relationships (mouse-click, time-out) occur.

Audio

Text

Fig. 11: Multidimensional relationship synchronization

5.4 Ordering of Relationships

A region with an entity attribute is instantiated during the presentation to sev-
eral regions with concrete values of the attribute.

In order to be able to specify relationships among these instances we intro-
duce the so-called self-relationships at the type level. Since there might be more

of such relationships needed to describe the desired presentation structure, there
must be a unique order in which they are applied. To facilitate this, the ordering
of relationships was introduced. In Fig. 12 we provide two examples to illustrate
this approach. Presentation diagrams are depicted on the left and the respective
screen renderings on the right.

Figure 12 (top) describes a bulleted index region. It consists of a region with
a constant attribute depicting the bullet (’·’) right to which is positioned the
region ’item’ containing the ’N.name’ attribute. From this region there is a link
to the region called ’info’ containing the ’N.description’ attribute. The ’bullet’
and the ’item’ region are grouped together in the region called ’enum’, which has
a spatial relationship (with the lower priority 1) to itself saying that the next
pair bullet-item will be placed below. In other words the constraint introduced
by this relationship is taken into account after applying the constraints from the
relationships that have the higher priority (0).

Figure 12 (bottom) describes a bookcase region. It consists of the ’shelf’
region, which contains the ’thumb’ region that has a navigational link to the
’picture’ region and also a link to itself saying that the next thumb will be
placed to its right. This rule is applied until there is no room left in the shelf
(the horizontal dimension of the ’shelf’ region). When the shelf is full we proceed
with the next one by applying the self spatial relationship of the ’shelf’ region
which has the lowest priority (2).

info

N.description
Description1

Description1

Bookcase region

0

below

ndx_neighb

xy

item ...
Neighbourhood1
Neighbourhood2
Neighbourhood3

T2

H.picture

below

picture

right

xy

ndx_neighb

shelf

0

T1

2

T3

T4 T5 T6

T7 ...
1

enum

0

bullet

1

0

0

Bulleted index region

N.name

H.thumb

Screen rendering

Screen rendering

right

’ ’

Description1

Picture1

Fig. 12: Bulleted index region. Bookcase region

6 User Adaptation

In our framework we try to address the (semi-) automatic generation and design
of multimedia presentations. Characteristic for the generation process is the
support of adaptation.

The system can adapt to the user by considering the user’s browsing behav-
ior. By observing the navigation behavior the system can infer (based on intelli-
gence specified by the application’s author) the user’s knowledge and adapt the
presentation on the basis of this assumed knowledge.

There is also adaptation to the platform the user is using (platform depen-
dence): if for example the system detects that the user is using a PC with a large
screen or a small hand-held device, then the system could adapt the presentation
to this platform.

Slices or slice relationships are available or accessible only after the conditions
hold. While the specification of the actual adaptation process is beyond the scope
of this paper (AHAM model from [10]), the concepts (in terms of AHAM) are
specified in this framework as slices and slice relationships. Hence, these slices
and slice relationships carry (in the conditions) part of the knowledge on which
the adaptation is based. In order to specify hypermedia presentations, especially
in the context of automatic design, it is necessary to describe which concepts
are part of the design. Our framework allows to specify exactly that.

7 Conclusions

The research described in this paper targets the support of automated hyper-
media presentation design (in the context of Web-based Information Systems).
Specifically, for applications involving data that change frequently, the design of
hypermedia presentations requires a structured approach. This paper discusses a
methodology that guides through the process of specifying the presentation gen-
eration process. The methodology is inspired by RMM and overcomes some of
RMM’s shortcomings for the application to automated presentation generation.
It also shows the specification techniques used in the steps of the methodology.

Our methodology distinguishes three steps in the design process. First, a
logical application design is made to organize the data elements at a logical
level, even independent of the platforms used for the presentation. Secondly,
at the logical level some of the specific details related to the platform that is
used are taken into consideration: this leads to a platform-dependent logical
application diagram. The third step in the process realizes the logical decisions
made in the first two steps, by carefully choosing representations for the different
constructs. At this level, the dimensions of hyperlink navigation, space and time
are included in the specification. This paper concentrates on the specification of
the different design decisions and illustrates them using the diagrams.

In further work we will extend these specification techniques with other con-
structs that allow for the specification of some of the other relevant details. In
the Dynamo project we are experimenting with different kinds of applications
such as the Electronic TV-Program Guide. In these experiments we learn how
different aspects play a role in the automated hypermedia presentation design
process. We aim at including more of these aspects in this specification frame-
work. One example relates to the use of constraints (rules) in the specification
of spatial relationships. Such constraints might not (easily) lead to a solution,

or even influence other design decisions (made earlier in the design process).
Other aspects relate to the combination of different kinds of relationships, or
the construction of ’virtual’ slices or regions.

In the Dynamo project the adaptation is an important feature. The con-
ditions associated with slices and regions allow for implementing different as-
pects of adaptation, such as user adaptation (navigation) and platform adap-
tation. The Hera prototype is developed incrementally, adding new features to
the methodology enables further verifying whether this mechanism suffices in
concrete applications.

References

1. Balasubramanian, P., Isakowitz, T., Stohr, E.A. : RMM: A Methodology for Struc-
tured Hypermedia Design. Communications of the ACM, 38(8):33-44, August 1995.

2. Barbosa, S.D.J., Rossi, G., Schwabe, D.: Systematic Hypermedia Application De-
sign with OOHDM. Hypertext, 1996.

3. Bieber, M., Isakowitz, T., Vitali, F.: Web Information Systems. Communications
of the ACM, 41(7):78-80, July 1998.

4. Brusilovsky, P., De Bra, P., Houben, G.J.: Adaptive Hypermedia: From Systems to
Frameworks. ACM Computing Surveys, 31(4es), Article No. 12, December 1999.

5. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling
language for designing Web sites. WWW9, 2000.

6. Fraternali, P., Paolini, P.: Model-Driven Development of Web applications: the Au-
toWeb system. ACM Transactions on Information Systems, 18(4):323-382, October
2000.

7. Garzotto, F., Paolini, P., Schwabe, D.: HDM - A Model-Based Approach to Hyper-
text Application Design. ACM Transactions on Information Systems, 11(1):1-26 ,
January 1993.

8. Bulterman, D.C.A., Hardman, Mullender, K.S.L., Rutledge, L., van Ossenbruggen,
J.: Do You Have the Time? Composition and Linking in Time-based Hypermedia.
Hypertext and Hypermedia, 1999.

9. De Bra, P., Houben, G.J.: Automatic Hypermedia Generation for ad hoc Queries
on Semi-Structured Data. Digital Libraries, 2000.

10. De Bra, P., Houben, G.J., Wu, H.: AHAM: A Dexter-based Reference Model for
Adaptive Hypermedia. Hypertext and Hypermedia, 1999.

11. Diaz, A., Isakowitz, T.: RMCase: A Tool To Design WWW Applications. Fourth
International World Wide Web Conference, 1995.

12. Houben, G.J.: HERA: Automatically Generating Hypermedia Front-Ends for Ad
Hoc Data from Heterogeneous and Legacy Information Systems. Engineering Fed-
erated Information Systems, 2000.

13. Isakowitz, T., Kamis, A., Koufaris, M.: Extending RMM: Russian Dolls and Hy-
pertext. HICSS, 1997.

14. Isakowitz, T., Kamis, A., Koufaris, M.: Reconciling Top-Down and Bottom-Up
Design Approaches in RMM. Workshop on Information Technologies and Systems,
1997.

15. Isakowitz, T., Kamis, A., Koufaris, M.: The Extended RMM Methodol-
ogy for Web Publishing. New York University, 1998. Available online at
http://rmm-java.stern.nyu.edu/rmm/.

