Abstract
Relevance feedback has been proven to be a very effective query modification technique that the user, by providing her/his relevance judgments to the Information Retrieval System, can use to retrieve more relevant documents. In this paper we are going to introduce a relevance feedback method for the Bayesian Network Retrieval Model, founded on propagating partial evidences in the underlying Bayesian network. We explain the theoretical frame in which our method is based on and report the results of a detailed set of experiments over the standard test collections Adi, CACM, CISI, Cranfield and Medlars.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Y. K. Chang, C. Cirillo, and J. Razon. Evaluation of feedback retrieval using modified freezing, residual collection and test and control groups, pages 355–370. Prentice Hall, Inc., Englewood Cliffs, NJ, 1971.
L. M. de Campos, J. M. Fernández, and J. F. Huete. Building bayesian network-based information retrieval systems. In 11 th International Workshop on Database and Expert Systems Applications: 2nd Workshop on Logical and Uncertainty Models for Information Systems (LUMIS), 543–552, 2000.
L. M. de Campos, J. M. Fernández, and J. F. Huete. Query expansion in information retrieval systems using a bayesian network-based thesaurus. In Proceeding of the 14 th Uncertainty in Artificial Intelligence Conference, 53–60, 1998.
L. M. de Campos, J. M. Fernández, and J. F. Huete. Document instantiation for relevance feedback in the Bayesian network retrieval model. Submitted to the ACM-SIGIR’;01 Workshop on Mathematical and Formal Methods in IR.
R. Fung and B. D. Favero. Applying bayesian networks to information retrieval. Communications of the ACM, 38(2):42–57, 1995.
J. M. Fernández. Modelos de Recuperación de Información Basados en Redes de Creencia (in Spanish). Ph.D. Thesis, Universidad de Granada, 2001.
D. Ghazfan, M. Indrawan, and B. Srinivasan. Towards meaningful bayesian networks for information retrieval systems. In Proceedings of the IPMU’96 Conference, 841–846, 1996.
D. Harman. Relevance feedback revisited. In Proceedings of the 16 th ACM-SIGIR Conference, 1–10, 1992.
J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan and Kaufmann, San Mateo, 1988.
B. A. Ribeiro-Neto and R. R. Muntz. A belief network model for IR. In H. Frei, D. Harman, P. Schäble, and R. Wilkinson, editors, Proceedings of the 19 th ACM-SIGIR Conference, 253–260, 1996.
G. Salton and C. Buckley. Improving retrieval performance by relevance feedback. Journal of the American Society for Information Science, 41:288–297, 1990.
G. Salton and M. J. McGill. Introduction to modern Information Retrieval. McGraw-Hill, Inc., 1983.
A. Spink and R. M. Losee. Feedback in information retrieval. Annual Review of Information Science and Technology, 31:33–78, 1996.
H. R. Turtle and W. B. Croft. Inference networks for document retrieval. In J.-L. Vidick, editor, Proceedings of the 13 th ACM-SIGIR Conference, 1–24, 1990.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de Campos, L.M., Fernández-Luna, J.M., Huete, J.F. (2001). Relevance Feedback in the Bayesian Network Retrieval Model: An Approach Based on Term Instantiation. In: Hoffmann, F., Hand, D.J., Adams, N., Fisher, D., Guimaraes, G. (eds) Advances in Intelligent Data Analysis. IDA 2001. Lecture Notes in Computer Science, vol 2189. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44816-0_2
Download citation
DOI: https://doi.org/10.1007/3-540-44816-0_2
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42581-6
Online ISBN: 978-3-540-44816-7
eBook Packages: Springer Book Archive