Skip to main content

Relational Reinforcement Learning for Agents in Worlds with Objects

  • Conference paper
  • First Online:
Adaptive Agents and Multi-Agent Systems (AAMAS 2002, AAMAS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2636))

  • 622 Accesses

Abstract

In reinforcement learning, an agent tries to learn a policy, i.e., how to select an action in a given state of the environment, so that it maximizes the total amount of reward it receives when interacting with the environment. We argue that a relational representation of states is natural and useful when the environment is complex and involves many inter-related objects. Relational reinforcement learning works on such relational representations and can be used to approach problems that are currently out of reach for classical reinforcement learning approaches. This chapter introduces relational reinforcement learning and gives an overview of techniques, applications and recent developments in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bertsekas, D.P., & Tsitsiklis, J.N. (1996). Neuro-Dynamic Programming. Belmont, MA: Athena Scientific.

    MATH  Google Scholar 

  2. Blockeel, H., De Raedt, L., & Ramon, J. (1998). Top-down induction of clustering trees. In Proc. 15th International Conference on Machine Learning, pages 55–63. San Francisco: Morgan Kaufmann.

    Google Scholar 

  3. Chapman, D., & Kaelbling, L. P. (1991). Input generalization in delayed reinforcement learning: An algorithm and performance comparisons. In Proc. 12th International Joint Conference on Artificial Intelligence, pages 726–731. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  4. Driessens, K., & Blockeel, H. (2001). Learning Digger using hierarchical reinforcement learning for concurrent goals. In Proc. 5th European Workshop on Reinforcement Learning, pages 11–12. Utrecht, The Netherlands: CKI Utrecht University.

    Google Scholar 

  5. Driessens, K., & Džeroski, S. (2002) Integrating experimentation and guidance in relational reinforcement learning. In Proc. 19th International Conference on Machine Learning, pages 115–122. San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  6. Driessens, K., Ramon, J., & Blockeel, H. (2001). Speeding up relational reinforcement learning through the use of an incremental first order decision tree algorithm. In Proc. 12th European Conference on Machine Learning, pages 97–108. Berlin: Springer.

    Google Scholar 

  7. Džeroski, S., De Raedt, L., & Blockeel, H. (1998). Relational reinforcement learning. In Proc. 15th International Conference on Machine Learning, pages 136–143. San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  8. Džeroski, S., De Raedt, L., & Driessens, K. (2001). Relational reinforcement learning. Machine Learning, 43, 7–52.

    Article  MATH  Google Scholar 

  9. Kazakov, D., & Kudenko, D. (2001). Machine learning and inductive logic programming for multi-agent systems. In Luck, M., Marik, V., Stepankova, O., and Trappl, R., editors, Multi-Agent Systems and Applications, pages 246–270. Berlin: Springer.

    Google Scholar 

  10. Lavrač, N. and Džeroski, S. (1994). Inductive Logic Programming: Techniques and Applications., New York: Ellis Horwood. Freely available at http://www-ai.ijs.si/SasoDzeroski/ILPBook/

    Google Scholar 

  11. Smart, W. D., & Kaelbling, L. P. (2000). Practical reinforcement learning in continuous spaces. In Proc. 17th International Conference on Machine Learning, pages 903–910. San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  12. Sutton, R. S. (1996) Generalization in reinforcement learning: Successful examples using sparse coarse coding. In Proc. 8th Conference on Advances in Neural Information Processing Systems, pages 1038–1044. Cambridge, MA: MIT Press.

    Google Scholar 

  13. Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Džeroski, S. (2003). Relational Reinforcement Learning for Agents in Worlds with Objects. In: Alonso, E., Kudenko, D., Kazakov, D. (eds) Adaptive Agents and Multi-Agent Systems. AAMAS AAMAS 2002 2001. Lecture Notes in Computer Science(), vol 2636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44826-8_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-44826-8_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40068-4

  • Online ISBN: 978-3-540-44826-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics