Skip to main content

Distributed Explicit Fair Cycle Detection (Set Based Approach)

  • Conference paper
  • First Online:
Model Checking Software (SPIN 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2648))

Included in the following conference series:

Abstract

The fair cycle detection problem is at the heart of both LTL and fair CTL model checking. This paper presents a new distributed scalable algorithm for explicit fair cycle detection. Our method combines the simplicity of the distribution of explicitly presented data structure and the features of symbolic algorithm allowing for an efficient parallelisation. If a fair cycle (i.e. counterexample) is detected, then the algorithm produces a cycle, which is in general shorter than that produced by depth-first search based algorithms. Experimental results confirm that our approach outperforms that based on a direct implementation of the best sequential algorithm.

Supported by GA ČR grant no. 201/00/1023.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Barnat, L. Brim, and J. Stříbrná. Distributed LTL Model-Checking in SPIN. In Proc. SPIN Workshop on Model Checking of Software, volume 2057 of LNCS, pages 200–216. Springer, 2001.

    Chapter  Google Scholar 

  2. J. Barnat, L. Brim, and I. Černá. Property driven distribution of Nested DFS. In Proc. Workshop on Verification and Computational Logic, number DSSE-TR-2002-5 in DSSE Technical Report, pages 1–10. Dept. of Electronics and Computer Science, University of Southampton, UK, 2002.

    Google Scholar 

  3. G. Behrmann. A performance study of distributed timed automata reachability analysis. In Proc. Workshop on Parallel and Distributed Model Checking, volume 68 of Electronic Notes in Theoretical Computer Science. Elsevier Science Publishers, 2002.

    Google Scholar 

  4. S. Ben-David, T. Heyman, O. Grumberg, and A. Schuster. Scalable distributed on-the-fly symbolic model checking. In Proc. Formal Methods in Computer-Aided Design, volume 1954 of LNCS, pages 390–404, 2000.

    Chapter  Google Scholar 

  5. R. Bloem, K. Ravi, and F. Somenzi. Efficient decision procedures for model checking of linear time logic properties. In Proc. Computer-Aided Verification, volume 1633 of LNCS, pages 222–235. Springer, 1999.

    Chapter  Google Scholar 

  6. B. Bollig, M. Leucker, and M. Weber. Parallel model checking for the alternation free μ-calculus. In Proc. Tools and Algorithms for the Construction and Analysis of Systems, volume 2031 of LNCS, pages 543–558. Springer, 2001.

    Chapter  Google Scholar 

  7. R. K. Brayton et al. VIS: a system for verification and synthesis. In Proc. Formal Methods in Computer Aided Design, volume 1166 of LNCS, pages 248–256. Springer, 1996.

    Chapter  Google Scholar 

  8. L. Brim, I. Černá, P. Krčál, and R. Pelánek. Distributed LTL model checking based on negative cycle detection. In Proc. Foundations of Software Technology and Theoretical Computer Science, volume 2245 of LNCS, pages 96–107. Springer, 2001.

    Chapter  Google Scholar 

  9. R. E. Bryant. Graph-based algorithms for boolean function manipulation. In IEEE Transactions on Computers, volume C-35(8), pages 677–691, 1986.

    Article  Google Scholar 

  10. J. R. Büchi. On a decision method in restricted second order arithmetic. In Proc. International Congress on Logic, Methodology and Philosophy Science, pages 1–11. Stanford university Press, 1960.

    Google Scholar 

  11. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model checking: 1020 states and beyond. Information and Computation, 98(2):142–170, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  12. I. Černá and R. Pelánek. Relating the hierarchy of temporal properties to model checking. Submitted, 2002.

    Google Scholar 

  13. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 1999.

    Google Scholar 

  14. C. Eisner and D. Peled. Comparing symbolic and explicit model checking of a software system. In Proc. SPIN Workshop on Model Checking of Software, volume 2318 of LNCS, page 230–239. Springer, 2002.

    Google Scholar 

  15. E. A. Emerson and C.-L. Lei. Modalities for model checking: branching time logic strikes back. Science of Computer Programming, 8:275–306, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  16. K. Fisler, R. Fraer, G. Kamhi Y. Vardi, and Z. Yang. Is there a best symbolic cycle-detection algorithm? In Proc. Tools and Algorithms for Construction and Analysis of Systems, volume 2031 of LNCS, pages 420–434. Springer, 2001.

    Chapter  Google Scholar 

  17. H. Garavel, R. Mateescu, and I. Smarandache. Parallel state space construction for model-checking. In Proc. SPIN Workshop on Model Checking of Software, volume 2057 of LNCS, pages 215+. Springer, 2001.

    Chapter  Google Scholar 

  18. R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of linear temporal logic. In Proc. Protocol Specification Testing and Verification, pages 3–18. Chapman & Hall, 1995.

    Google Scholar 

  19. R. H. Hardin, A. Harel, and R. P. Kurshan. COSPAN. In Proc Conference on Computer Aided Verification, volume 1102 of LNCS, pages 423–427. Springer, 1996.

    Google Scholar 

  20. T. Heyman, D. Geist, O. Grumberg, and A. Schuster. Achieving scalability in parallel reachability analysis of very large circuits. In Proc. Conference on Computer Aided Verification, volume 1855 of LNCS, pages 20–35. Springer, 2000.

    Chapter  Google Scholar 

  21. R. Hojati, R. K. Brayton, and R. P. Kurshan. BDD-based debugging using language containment and fair CTL. In Proc. Conference on Computer Aided Verification, volume 697 of LNCS, pages 41–58. Springer, 1993.

    Google Scholar 

  22. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering, 23(5):279–295, 1997.

    Article  MathSciNet  Google Scholar 

  23. G. J. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. In Proc. SPIN Workshop on Model Checking of Software, pages 23–32. American Mathematical Society, 1996.

    Google Scholar 

  24. A. J. Hu. Techniques for efficient formal verification using binary decision diagrams. PhD thesis, Stanford University, 1995.

    Google Scholar 

  25. A. J. Hu, G. York, and D. L. Dill. New techniques for efficient verification with implicitly conjoined BDDs. In Proc. Design automation Conference, pages 276–282, 1994.

    Google Scholar 

  26. Y. Kesten, A Pnueli, and L. Raviv. Algorithmic verification of linear temporal logic specifications. In Proc. Automata, Languages and Programming, volume 1443 of LNCS, pages 1–16. Springer, 1998.

    Chapter  Google Scholar 

  27. R. Kurshan, V. Levin, M. Minea, D. Peled, and H. Yenigün. Static partial order reduction. In Tools and Algorithms for Construction and Analysis of Systems, volume 1384 of LNCS, pages 345–357. Springer.

    Chapter  Google Scholar 

  28. F. Lerda and R. Sisto. Distributed-memory model checking with SPIN. In Proc. SPIN Workshop on Model Checking of Software, volume 1680 of LNCS, Berlin, Germany, 1999. Springer.

    Chapter  Google Scholar 

  29. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publisher, 1994.

    Google Scholar 

  30. K. Ravi, R. Bloem, and F. Somenzi. A comparative study of symbolic algorithms for the computation of fair cycles. In Proc. Formal Methods in Computer-Aided Design, volume 1954 of LNCS, pages 143–160. Springer, 2000.

    Chapter  Google Scholar 

  31. J. H. Reif. Depth-first search is inherrently sequential. Information Processing Letters, 20(5):229–234, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  32. F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In Proc. Computer Aided Verification, volume 1855 of LNCS, pages 248–263. Springer, 2000.

    Chapter  Google Scholar 

  33. U. Stern and D. L. Dill. Parallelizing the Murϕ verifier. In Proc. Computer Aided Verification, volume 1254 of LNCS, pages 256–267. Springer, 1997.

    Google Scholar 

  34. J. R. Streett. Propositional dynamic logic of looping and converse is elementarily decidable. Information and Control, 54(1–2):121–141, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  35. R. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on computing, pages 146–160, 1972.

    Google Scholar 

  36. M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for Concurrency: Structure versus Automata, volume 1043 of LNCS, pages 238–266. Springer, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Černá, I., Pelánek, R. (2003). Distributed Explicit Fair Cycle Detection (Set Based Approach). In: Ball, T., Rajamani, S.K. (eds) Model Checking Software. SPIN 2003. Lecture Notes in Computer Science, vol 2648. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44829-2_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-44829-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40117-9

  • Online ISBN: 978-3-540-44829-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics