Abstract
Current graphical systems include primitives to draw straight-line segments, circles, Bézier curves and surfaces, NURBS (Non-Uniform Rational B-Splines), but many of them fail displaying curve singularities (self-intersections) correctly. This paper introduces a fast and robust non-uniform binary space partition (BSP) algorithm for implicit curves possibly with self-intersections and other differentiable singularities. These singularities are computed without using traditional differential techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Allgower, E. and Georg, K. Numerical Continuation Methods: An Introduction. Springer-Verlag, (1990)
Allgower, E., Gnutzmann, S.: Simplicial Pivoting for Mesh Generation of Implicitly Defined Surfaces. Computer Aided Geometric Design, Vol. 8, (1991) 305–325
Akai, Terrence J.: Applied Numerical Methods for Engineers. John Wiley Λ Sons Inc (1994)
Blinn, J.: A Generalization of Algebraic Surface drawing, ACM Transactions on Graphics. Vol. 1,No. 3, (1982) 235–256
Bloomenthal, J.: Poligonisation of implicit surfaces. Computer Aided Geometric Design, Vol. 5, (1988) 341–355
Bloomenthal, J.: An Implicit Surface polygonizer. Graphics Gems, IV, (1994)
Chandler, R.: A tracking algorithm for implicitly defined curves. IEEE Computer Graphics Λ Applications, Vol. 8,No. 2, (1988) 83–89
Keyser, J., Culver, T., Manocha, D., Krishnan, S.: MAPC a library for efficient and exact mnipulation of algebric points and curves. Proceedings of the 15th ACM Symposium on Computational Geometry, (1999) 360–369
Krishnan, S., Manocha, D.: Numeric symbolic algorithms for evaluating onedimensional algebric sets. Proceedings of ACM Symposium and Algebraic Computation, (1995) 59–67
Lopes, H., Oliveira, J.B., Figueiredo, L. H.: Robust Adaptive Polygonal Approximation of Implicit Curves. Proceedings of SibGrapi (2001)
Lorensen, W., Cline, W.: Marching Cubes: A High Resolution 3D Surface Construction Algorithm. Computer Graphics, Vol. 21,No. 4, (1987) 163–169
Moller, T., Yagel, R.: Efficient Rasterization of Implicit Functions. (1995). (http://citeseer.nj.nec.com/357413.html)
Shewchuk, J.: Adaptative precision floating-point arithmetic and fast robust geometric predicates. Discrete Computational Geometry, Vol. 18,No. 3, (1997) 305–363
Snyder, J.: Interval arithmetic for computer graphics. Proceedings of ACM Siggraph, (1992) 121–130
Triquet, F., at al.: Fast Polygonization of Implicit Surfaces. WSCG’ 2001, Vol 2. (2001) 283–290
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Morgado, F., Gomes, A. (2003). A Non-uniform Binary Space Partition Algorithm for 2D Implicit Curves. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds) Computational Science and Its Applications — ICCSA 2003. ICCSA 2003. Lecture Notes in Computer Science, vol 2669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44842-X_43
Download citation
DOI: https://doi.org/10.1007/3-540-44842-X_43
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40156-8
Online ISBN: 978-3-540-44842-6
eBook Packages: Springer Book Archive