Skip to main content

An Improved Algorithm for Point Set Pattern Matching under Rigid Motion

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2653))

Included in the following conference series:

  • 463 Accesses

Abstract

This paper presents a simple algorithm for the partial point set pattern matching in 2D. Given a set P of n points, called sample set, and a query set Q of k points (n ≥ k), the problem is to find a matching of Q with a subset of P under rigid motion. In other words, whether each point in Q is matched with corresponding point in P under translation and/or rotation. The proposed algorithm requires O(n 2) space and O(n 2logn) preprocessing time, and the worst case query time complexity is O(logn), where α is the maximum number of equidistant pairs of points. For a set of n points, α may be O(n 4/3) in the worst case. Experimental results on random point sets and fingerprint databases show that it needs much less time in actual practice. The algorithm is then extended for checking the existence of a matching among two sets of line segments under rigid motion in O(knlogn) time, and locating a query polygon among a set of sample polygons in O(kn) time under rigid motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. K. Agarwal and M. Sharir, Efficient Algorithm for Geometric Optimization, ACM Computing Surveys, vol. 30, No. 4, pp. 412–458, 1998.

    Article  Google Scholar 

  2. P. K. Agarwal, B. Aronov, M. Sharir and S. Suri, Selecting Distances in the Plane, Algorithmica, vol. 9, pp. 495–514, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  3. T. Akutsu, H. Tamaki, and T. Tokuyama, Distribution of Distances and Triangles in a Plane Set and Algorithms for Computing the Largest Common Point Sets, Discrete Computational Geometry, vol. 20, pp. 307–331, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  4. H. Alt and L. J. Guibas, Discrete Geometric Shapes: Matching, Interpolation, and Approximation — A Survey, Technical Report B 96-11, Freie Universität Berlin, 1996.

    Google Scholar 

  5. H. Alt, B. Behrends, and J. Blömer, Approximate Matching of Polygonal Shapes, in Proc. ACM Symposium on Computational Geometry, pp. 186–193, 1991.

    Google Scholar 

  6. H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl, Congruence, Similarity and Symmetries of Geometric Objects, Discrete Computational Geometry, vol. 3, pp. 237–256, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. D. Atkinson, An Optimal Algorithm for Geometrical Congruence, J. Algorithms, vol. 8, pp. 159–172, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Bishnu, P. Bhowmick, J. Dey, B. B. Bhattacharya, M. K. Kundu, C. A. Murthy, and T. Acharya, Combinatorial Classification of Pixels for Ridge Extraction in a Gray-scale Fingerprint Image, accepted in: The 3rd Indian Conference on Computer Vision, Graphics and Image Processing, Ahmedabad, India, Dec. 2002.

    Google Scholar 

  9. J. Beck and J. Spencer, Unit Distances, J. Combinatorial Theory A, vol. 37, pp. 231–238, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. T. Candela, P. J. Grother, C. I. Watson, R. A. Wilkinson, and C. L. Wilson, PCAzSYS — A Pattern-Level Classification Automation System for Fingerprints, NISTIR 5647, National Institute of Standards and Technology, August 1995.

    Google Scholar 

  11. A. Farina, Zs. M. Kovacs-Vajna, and A. Leone, Fingerprint Minutiae Extraction from Skeletonized Binary Images, Pattern Recognition, vol. 32, pp. 877–889, 1999.

    Article  Google Scholar 

  12. D. Forsyth, J. L. Mundy, A. Zisserman, C. Coelho, A. Heller, and C. Rothwell, Invariant Descriptors for 3-D Object Recognition and Pose, IEEE Trans. PAMI, vol. 13, pp. 971–991, 1991.

    Google Scholar 

  13. M. Gavrilov, P. Indyk, R. Motwani, and S. Venkatasubramanian, Geometric Pattern Matching: A Performance Study, in Proc. ACM Symposium on Computational Geometry, pp. 79–85, 1999.

    Google Scholar 

  14. J. E. Goodman and R. Pollack, Multidimensional Sorting, SIAM Journal on Computing, vol. 12, pp. 484–507, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. T. Goodrich, J. S. B. Mitchell, and M. W. Orletsky, Approximate Geometric Pattern Matching under Rigid Motions, IEEE Trans. PAMI, vol. 21, No. 4, pp. 371–379, April, 1999.

    Google Scholar 

  16. R. M. Haralick, C. N. Lee, X. Zhuang, V. G. Vaidya, and M. B. Kim, Pose Estimation from Corresponding Point Data, IEEE Trans. SMC, vol. 19, pp. 1426–1446, 1989.

    Google Scholar 

  17. S. Jozsa and E. Szemeredi, The Number of Unit Distances on the Plane, in: Infinite and Finite Sets Coll. Math. Soc. J. Bolyai, vol. 10, pp. 939–950, 1973.

    Google Scholar 

  18. D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wesley Publishing Company, Inc., 1973.

    Google Scholar 

  19. D. E. Knuth, Jr. J. H. Morris, and V. R. Pratt, Fast Pattern Matching in Strings, SIAM J. on Computing, vol. 6, no. 2, pp. 240–267, 1977.

    Article  MathSciNet  Google Scholar 

  20. D. T. Lee and Y. T. Ching, The Power of Geometric Duality Revisited, Inform. Process. Lett., vol 21, pp. 117–122, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Matousek, On Enclosing k Points by a Circle, Information Processing Letters, vol. 53, pp. 217–221, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  22. N. Megiddo, Applying Parallel Computation Algorithms in the Design of Serial Algorithms, J. Assoc. Comput. Mach, vol 30, pp. 852–865, 1983.

    MATH  MathSciNet  Google Scholar 

  23. P. J. Rezende and D. T. Lee, Point Set Pattern Matching in d-dimensions, Algorithmica, vol. 13, pp. 387–404, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  24. L. Szekely, Crossing numbers and Hard Erdös Problems in Discrete Geometry, Combinatorics, Probability and Computing, vol. 6, pp. 353–358, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  25. J. Spencer, E. Szemeredi, and W. T. Trotter, Unit Distances in the Euclidean Plane, in: Graph Theory and Combinatorics (B. Bollobas ed.) Academic Press, London, pp. 293–308, 1984.

    Google Scholar 

  26. C. I. Watson, Mated Fingerprint Card Pairs 2, Technical Report Special Database 14, MFCP2, National Institute of Standards and Technology, September 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bishnu, A., Das, S., Nandy, S.C., Bhattacharya, B.B. (2003). An Improved Algorithm for Point Set Pattern Matching under Rigid Motion. In: Petreschi, R., Persiano, G., Silvestri, R. (eds) Algorithms and Complexity. CIAC 2003. Lecture Notes in Computer Science, vol 2653. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44849-7_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-44849-7_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40176-6

  • Online ISBN: 978-3-540-44849-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics