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Abstract. Surgical planning as a treatment for vascular diseases re-

quires fast blood ÿow simulations that are eÆcient in handling changing

geometry. It is, for example, necessary to try diþerent paths of a planned

bypass and study the resulting hemodynamic ÿow ýelds before decid-

ing the ýnal geometrical solution. With the aid of a real time interactive

simulation environment that uses an eÆcient ÿow solver, this allows ÿex-

ible treatment planning. In this article, we demonstrate that the lattice

Boltzmann method can be an alternative robust CFD technique for such

kind of applications. Steady ÿow in a 2D symmetric bifurcation is studied

and the obtained ÿow ýelds and stress tensor components are compared

to those obtained by a Navier-Stokes (NS) solver. We also demonstrate

that the method is fully adaptive to interactively changing geometry.

1 Introduction

Flow characteristics near branches and bifurcations are quite important in hemo-
dynamics. Cardiovascular diseases, a leading cause of mortality in the western
world[1], localize in segments of the arterial system where the shear stress

is
low. Frequently, treatment of such diseases may involve planning for a new host
artery or design of suitable cardiovascular devices, which are complex and

pa-
tient speciÿc.
Recently, two major developments in the ÿeld of vascular surgery planning ha

ve
made it possible to better and faster plan risk reduced surgeries. Firstly, mag-
netic resonance angiography (MRA) has been considerably enhanced to provide
excellent and fast depiction of the arterial tree and non-invasive dynamic data
acquisition is made possible[2]. Secondly, the development of cheap computing
power and interactive simulation environments have made real time simulations
of blood þow not far from reach[3, 4]. With these in hand, an eÆcient and robust
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ÿow solver has to be used in an interactive modeling environment[5]. The þeld of
computational ÿuid dynamics (CFD) has also developed extensively during the
last two decades. New particle based methods such as dissipative particle dynam-
ics, lattice gases and lattice Boltzmann methods have been developed and ma-
tured. The lattice Boltzmann method with Bhatnagar, Gross and Krook (BGK)
simpliþed collision operator is a discretization of a discrete velocity Boltzmann
equation that describes the evolution of particles in kinetic theory. Due to its
simple implementation, straightforward parallelization and easy grid generation,
the capability of the lattice Boltzmann method has been demonstrated in various

applications including Newtonian blood ÿow simulations[6], non-Newtonian and
suspension ÿows[7]. Throughout the rest of this paper, we present the capabil-
ity of the lattice Boltzmann method as a robust technique for interactive blood
ÿow simulations by considering the case of a photo-typical symmetric bifurcation
with a changing geometry.

2 The Lattice Boltzmann Method

Diýerent from the traditional CFD methods which obtain the velocity and pres-
sure by solving the Navier-Stokes equations and computing the shear stress from
the velocity proþles, the lattice Boltzmann method is a special þnite diýer-
ence discretization of the simpliþed Boltzmann equation with BGK collision
operator[8{10] which describes transport phenomena at the mesoscale level. The
dynamics of the ÿuid is modeled by the transport of simple þctitious particles on
the nodes of a Cartesian grid. Simulations with this method involve two simple
steps; streaming to the neighboring nodes and colliding with local node popu-
lations represented by the probability fi of a particle moving with a velocity ei
per unit time step Æt. Populations are relaxed towards their equilibrium states
during a collision process. The equilibrium distribution function

f
(eq)
i = wiÿ

ÿ
1 +

3

v2
ei ÿ u+

9

2v4
(ei ÿ u)

2
þ

3

2v2
u ÿ u

þ
; (1)

is a low Mach number approximation to the Maxwellian distribution. Here, wi

is a weighting factor, v = Æx=Æt is the lattice speed, and Æx and Æt are the lattice
spacing and the time step, respectively. Values for the weighting factor and the
discrete velocities depend on the used lattice Boltzmann model and can be found
in literature[10, 11, 9]. The lattice Boltzmann equation

fi(x+ eiÆt; ei; t+ Æt)þ fi(x; ei; t) = þ

1

þ
[fi(x; ei; t)þ f

(0)
i (x; ei; t)] (2)

can be obtained by discretizing the evolution equation of the distribution func-
tions in the velocity space using a þnite set of velocities ei. In this equation, þ
is the dimensionless relaxation time. By Taylor expansion of the lattice Boltz-
mann equation up to O(Æt2) and application of the multi-scale Chapman-Enskog
technique[10], the Navier-Stokes equations and the momentum ÿux tensor up to
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second order in the Knudsen number are obtained. The hydrodynamic den-

sity, ÿ, and the macroscopic velocity, u, are determined in terms of the particle

distribution functions from the laws of conservation of mass and momentum:

ÿ =
P

i fi =
P

i f
(eq)
i and ÿu =

P
i eifi =

P
i eif

(eq)
i : The pressure is given by

p = ÿc
2
s and the kinematic viscosity is þ = c

2
sÆt(ý ÿ

1
2 ), where cs is the speed

of sound. Diÿerent lattice Boltzmann models diÿer in the choice of the distri-

bution functions, the number of moving particles and the speed of sound inside

the system. In our study, we have used an improved incompressible D2Q9i (two

dimensional, 9 particles, incompressible) model [11], which has three types of

particles on each node; a rest particle, four particles moving along x and y prin-

cipal directions with speeds jeij = þ1, and four particles moving along diagonal

directions with speeds jeij =
p
2. The stress tensor can be computed from the

non-equilibrium parts of the distribution functions,

üÿþ = ÿÿc
2
sÆÿþ ÿ

ÿ
1ÿ

1

2ý

þX
i=0

f
(1)
i eiÿeiþ : (3)

which is independent of the velocity þelds, in contrast to the NS solvers for which

a need to get the derivatives of obtained velocity proþles is not avoidable.

3 Simulations

We have carried out two diÿerent benchmark simulations. The þrst benchmark

considers steady ýow in a symmetric bifurcation and validates the results against

a conventional NS solver. The second benchmark uses this bifurcation to study

the robustness and response of the lattice Boltzmann method to a changing

geometry. The general aim of these benchmark simulations is to demonstrate

that the lattice Boltzmann yields accurate and robust results for applications

related to hemodynamics and biomedical engineering. The two benchmarks are

discussed below.

We are interested in the symmetric bifurcation as a 2D simpliþed model for

arteries. As we mentioned above, there is a direct relation between the shear

stress and Atherosclerosis, which is a highly localized disease in areas of the

carotid, coronary and femoral arteries and abdominal aorta. All these locations

have complex geometry, such as branching and bifurcation, complex ýow pat-

terns, secondary ýow and complex shear stress. Several numerical and experi-

mental models of ýuid ýow in large arteries and bifurcating tubes were previously

studied[12 ÿ 16]. However, in all these, authors used NS solvers to obtain the

ýow þelds and approximated velocity gradients to get the shear stress. Studying

the symmetric bifurcation as a benchmark for blood ýow problems gives us a

clearer idea about the complexity of the ýow þeld and the shear stresses at loca-

tions of interest and allows us to investigate implementation of several boundary

conditions before using them for more complex geometry.
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Fig. 1. Geometry of the simulated symmetric bifurcation

In this study, we consider a simpliÿed model of a two-dimensional symmetric

bifurcation that consists of one main tube of diameter D and length L and two

branches at the end of the main tube, each of which has an outer length L and

diameter a = D=2. The angle ÿ between each branch and the centerline AB that

passes horizontally across the divider is 30o. The geometry of the symmetric

bifurcation is illustrated in Fig. 1, in which the centerline AB and the cross line

CD will be reference axes for measurements and comparisons of the þow ÿelds

and the components of the stress tensor. The total vascular bed (i.e. the total

cross section) and consequently the average velocity of this bifurcation does not

change in the daughter branches than those in the mother branch [16]. The ge-

ometry of the symmetric bifurcation whose vascular bed does not change, makes

the region just before the divider an expanding region. This additional area has

to be ÿlled by the þuid. As a result, both the pressure and the velocity drop near

to the divider before they enter the branches, where the velocity accelerates to-

wards the fully developed þow and the pressure drops faster than the pressure

in the main branch.

We have carried out a number of lattice Boltzmann simulations for steady þow

in the symmetric bifurcation at Re = 1, Re = 200 and Re = 1250, where

Re = DU0=þ is the Reynolds number. The diameter of the main branch is rep-

resented by 40 lattice points on the coarsest grid and 320 lattice points on the

ÿnest grid. At the inlet, we have set a þat velocity U0 of magnitude correspond-

ing to the required Reynolds number. Once the velocity is known at the inlet, the

pressure and the unknown values of the incoming (to the þuid) particle distribu-

tions can be computed from the outgoing (to the inlet) distribution functions in

a simple way[17]. For the outlets, we have assumed fully developed þow. Finally,

for the walls, we have implemented a simple bounce-back scheme in which par-

ticles hitting the walls simply reverse their direction towards the þuid. Again a

number of more accurate schemes are available to satisfy the non-slip condition,

but the bounce back rule seems good enough for this benchmark and is more

suitable for complex arterial systems, since it is adaptive, simple and fast.

The velocity proÿles and the shear stress as obtained by LBM are shown in

Fig.2 for the three Reynolds numbers. As shown from these ÿgures, the þow

1037Lattice Boltzmann, a Robust and Accurate Solver



fully develops just after the inlet region for Re = 1. However, for the larger
Reynolds numbers, the ÿow is not yet fully developed when entering the divider
region. At the outlets, the ÿow is fully developed for Re = 1 and Re = 200. For
Re = 1250, it appears that the ÿow is not fully developed at the outlets, but this
does not have signiþcant eýects on the ÿow near to the divider (test simulations
of varying lengths of the branches did not show signiþcant diýerence (data not
shown)) . We also observe that the ÿow near the divider becomes complex. As
the region before the divider is an expansion region, the velocity ÿow pattern
drops before entering the branches. The velocity skews towards the inner walls

inside the daughter branches and each of the two streams are bent because of
the inÿuence of the secondary motion, with higher velocities near the outer walls
of the bend. All these features are in agreement with the literature[18] and with
the solutions of the þnite volume results, to be presented below.
The ÿxy components at the inlet are very close to zero, because of the imposed
ÿat velocity proþle. The corner points C and D and the divider region show
higher stress values. The stress in the inner walls of the daughter branches is
larger than that at the outer walls. As the Reynolds number increases, the shear
stress behaves more complex, especially around the divider.

Next, results obtained from the LBM are quantitatively compared to those
obtained by a þnite volume method[19]. A similar boudary conditions were used.
The comparison is made along the centerline AB and the cross line CD. We
have achieved acceptable agreement between the results obtained from the LBM
and the results obtained from the þnite volume method (FVM) for the two
components of the velocity (Fig. 3 (a ÿ d)). The two methods show that the
maxima of vx are shifted towards the outer walls before entering the expansion
region and these maxima approach the wall as the Reynolds number increases
(since the velocity component increases). As it is shown in Fig. 3(a) for Re = 1,
the maximum diýerence in the x-component of the velocity occurs at the center
point which faces the divider for Re = 1. That is because of the ÿexibility of the
þnite volume method in performing local grid reþnements at complex regions.
For Re = 200 and Re = 1250, the diýerences are less than one percent. We
also observe that the LBM solution approaches the FVM solution as the grid is
reþned (see e.g. Fig. 3 (a)).
The shear stress component, ÿxy, shows good agreement for both methods, as it
is shown in Figs. 3 (e ÿ g) for the three Reynolds numbers. It is worth noting
that the bounce back rule yields good results for the shear stress close to the
wall, since ÿ not aýected by the constant slip velocity.
While looking at the results along the centerline AB, we have observed good
agreement for vx (data not shown). Due to symmetry, vy must be zero along
AB. Fig.3 (h) compares the pressure drop along the centerline AB for the three
Reynolds numbers. In this case, discrepancy in the pressure drops has been
observed. The maximum diýerence between the two solutions is about 20% ,
which occurs at low Reynolds number, near to the divider.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Contours of velocity magnitudes and shear stress in Lattice Units for Re =
1(dx/dt = 0.0091 m/s), Re = 200 (dx/dt =0.0912 m/s) and Re = 1250 (dx/dt =0.5706
m/s).
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B.pressure drop along the centerline A
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During vascular surgical planning, we envision that diÿerent geometrical solu-

tions need to be tested on the patient anatomical image provided by a suitable

imaging technique. Conventionally, with NS solvers, for each newly suggested

geometrical solution SN , the previous solution SO is discarded, a new grid GN

has to be generated and the simulation has to be restarted to obtain the solu-

tion SN . This may take considerable amount of simulation time. However, there

exisits some CFD methods which are fully adaptive, such as the þnite diÿerence

methods. In this section, we present primitive results on adaptivity of lattice

Boltzmann method. Given a geometry G(t0) at time t0, we þrst run the lattice

Boltzmann solver towards obtaining the solution S(t0) while monitoring for a

new geometry, not too diÿerent from the previous geometry. If at time ti the

user introduces a new geometry G(ti), the simulation instantaneously adapts to

the new grid and resumes towards obtaining the solution S(ti) without a need

to restart. The user may end up with a solution SN for the geometry G(tN ).

If the lattice Boltzmann method is robust enough, the simulation time from t0

to tN could be less than the sum of convergence times T 0

i
for each individual

simulation, i.e. tN ÿ t0 <
P

N

i=0
T 0

i
. Moreover, the accuracy in SN must be the

same as the solution SN (restart) which is obtained by restarting the simulation.

This is shown consequently.

We have conducted a number of 2D simulations on the bifurcation benchmark

introduced in the previous section, but allowing the bifurcation angle ÿ to change

during the simulation after equal number of time steps. We have selected this

benchmark for its similarity to the planning of a bypass for a diseased artery,

where, the surgeon tries diÿerent paths to implant the host artery.

The simulation starts at t0(ÿ) at ÿ = 20o and the system evolves towards the

solution S(0) a number of time steps i. At time t = i, the angle is increased by

Æÿ and the simulation resumes towards the solution S(i) for the geometry G(i)

another i number of time step after which the geometry G(2i) is introduced and

so on, till we end up with ÿ = 80o as our þnal G(N) geometry. The simulation

then converges to the solution S(GN (ni)). In lattice Boltzmann method, the

system converges directly after the mass and momentum reach a given tolerance,

chosen to be less than 10ÿ5 for momentum and less than 10ÿ9 for mass.

Technically speaking, the initialization and the update of the new geometry

are the critical factors which have direct inýuence on the total simulation time,

while the choice of boundary conditions aÿects both stability and simulation

time. In this experiment, we have tested two simple initialization techniques. In

both methods, only if the status of a node in the simulation box is changed from

ýuid to solid or from solid to ýuid, the node needs initialization. One way to

initialize is to put these nodes to their equilibrium distributions which involves

more computational time than the other simpler initialization method such as

assign them to an average value. It is noted that the system forgets about the

initialization method in a short transitional time ttrans. Figure 4 shows the total

number of nodes, the number of nodes to be updated and the total simulation

time for interactive and restarted simulations. As shown in this þgure, the total
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Fig. 4. A lattice Boltzmann Comparison between interactive simulations and restarted

simulations in terms of simulation time for a symmetric bifurcation benchmark.

simulation time during an interactively changing geometry is in general smaller

than the total simulation time for each individual simulation. This reÿects a nice

feature of the lattice Boltzmann method and makes it quite suitable for inter-

active simulation environments. However, the computational gain is less than

10% in this speciþc case. Application of acceleration techniques has proven to

be feasible[20]. It is noted that other Cartesian grid CFD techniques may share

this feature with the lattice Boltzmann method, but the body þtted grid solvers

such as the þnite element methods will be faced with the time it takes to adapt

the new mesh. We are now using the lattice Boltzmann as a core simulation sys-

tem for an interactive virtual vascular treatment environment using high level

architecture (HLA)and a virtual 4D CAVE environment for interaction and vi-

sualization[4, 5].

4 Summary

In this study, we have shown that the lattice Boltzmann method can be used to

simulate ÿow in þxed and changing geometry of common interest to hemodynam-

ics. Steady ÿow in the symmetric bifurcation has been studied and the results are

compared to a þnite volume Navier-Stokes solver. The capability of the lattice

Boltzmann method for interactive simulations has shortly been demonstrated

by studying ÿow in a changing geometry. It is found that the lattice Boltzmann

solver can be an adaptive ÿow solver without considerable diÆculties.

This work is partially funded by the \Steunfonds Soedanese Studenten", Lei-

den, The Netherlands. We also thank Arjen Berkenbos for performing the þnite

volume simulations.
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