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Abstract. In this paper we present a Lattice Boltzmann scheme for
diffusion on it unstructured triangular grids. In this formulation of a LB
for irregular grids there is no need for interpolation, which is required in
other LB schemes on irregular grids. At the end of the propagation step
the lattice gas particles arrive exactly at neighbouring lattice sites, as is
the case in LB schemes on Bravais lattices. The scheme is constructed
using the constraints that the moments of the equilibrium distribution
equals that of the Maxwell-Boltzmann distribution. For a special choice
of the relaxation parameter (ω = 1) we show that our LB scheme is
identical to a cell centered Finite Volume scheme on an unstructured
triangular grid.

1 Introduction

Lattice Boltzmann (LB) has become a powerfull numerical technique for solving
complex fluid phenomena, such as multiphase flow and flow in porous media
[1]. However, most LB schemes are implemented on uniform structured grids,
i.e. Bravais lattices. For many other types of applications this restriction to
uniform grids is quite disadvantageous. Several formulations of LB on irregular
grids have been developed [2–4], but most of these formulations involve an extra
interpolation step, which imposes undesired numerical diffusion.

In a previous paper [5] we have presented a LB scheme for convection diffusion
on a rectangular grid with non-uniform lattice spacings, i.e. an irregular, but still
structured grid. This scheme is without an extra interpolation step, but adheres
the original conceptual framework of the LB schemes on Bravais lattice, where
the lattice gas particles always propagate to adjacent lattice sites. In this paper
we take a step further in complexity of the grid, and present a LB scheme for
diffusion on unstructured triangular grids.

Like in our previous papers [5, 6] we show the equivalence between the LB
scheme and Finite Volume schemes for the special case of the relaxation param-
eter ω = 1. This equivalence with Finite Volume/Finite Difference has also been
noted for LB schemes modelling fluid dynamics on Bravais lattices by Junk [7]
and for diffusion by Wolf-Gladrow [8]. In the case of ω = 1 the LB scheme is
more or less equivalent with the artificial compressibility scheme of Chorin [7,
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9]. These insights show that Lattice Boltzmann and Finite Volume can benefit
from each other by transfer of concepts. In Finite Volume schemes schemes for
irregular unstructured grids are well developed, and can provide good directions
how to develop LB schemes for such grids.

For the general case of ω %= 1 the formulation of the Lattice Boltzmann
scheme is not quite identical to that of a scheme for Bravais lattices. We present
a proper formulation for a LB scheme describing diffusion on an irregular 1-D
grid. It is straightforward to extend this formulation to unstructured triangular
grids.
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Fig. 1. Grid with triangular lattice cells (control volumes) with lattice sites at the
intersection of the orthogonal bisectors {ei}. The vectors {oi} connect the vertices of
the triangles, and form a triangular lattice. The vectors {ei}
form a Voronoi mesh (dashed lines), which is dual to the triangular lattice (solid lines).

2 Triangular Bravais Lattice

Before developing the scheme for unstructured triangular grids, it is instructive
to develop first the Lattice Boltzmann scheme on a triangular Bravais lattice.
For this lattice we assume that the Wigner-Seitz cell is a triangle, with possible
unequal sides. The lattice site is located at the intersection of the orthogonal
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bisectors of the triangle. The lattice site is inside the Wigner-Seitz cell if all
angles of the triangle are less than π/2. This triangular lattice is shown in figure
1.

The vectors connecting the vertices of the Wigner-Seitz cell are defined by:

o1 = (a, c) (1)
o2 = (−b, c) (2)
o3 = (a + b, 0) (3)

The links connecting adjacent lattices sites are denoted as:

e1 = (−b, d) (4)
e2 = (a, d) (5)
e3 = (0, c− d) (6)

with d = ab/c, following from the orthogonality of ei and oi.
By linking the sites one obtains a lattice with Voronoi cells, which is dual

to the triangular lattice, defined by the vertices of the Wigner-Seitz cells. Note,
this kind of triangular lattice with its dual Voronoi lattice is very common in
Finite Elements, where it is named a Delauny triangular grid.

Now we construct the equilibrium distribution following the procedure pre-
sented earlier [5], which is based on the constraints for the existence of a global
equilibrium distribution. The number of particles at lattice site x at x at time
t are indicated with Ni(x, t), and the particle density distribution function is
fi(x, t)∆V (x) = Ni(x, t). Here ∆V is the volume of the triangular Wigner-Seitz
cell. The velocities of the particles are ci = ei/∆t.

At equilibrium each lattice cell has equal density, and the particle distribution
functions are weighted functions of this density:

feq
i = wiρ (7)

Furthermore, at equilibrium the mass flow rate through each side of the
Wigner-Seitz cell is equal to zero. The particles cross the boundary of the lattice
cell halfway the links {ei}. Hence, the mass flow rate Ji across this boundary is
equal to:

Ji =
Neq

i (x) −Neq
i∗ (x∗)

∆t
= 0 (8)

with x∗ = x + ei. With index i∗ we indicate the velocity of the particle propa-
gating in opposite direction along ei∗ = −ei. For a regular grid it follows that
∆V (x) = ∆V (x∗), and consequently

wi = wi∗ (9)

The lattice gas excert a pressure on all sides of the lattice cell, equal to
p = ρc2

s, which due to the force exerted by the particles on the side of the
Wigner-Seitz cell:

Fi = [ ||ci||Neq
i (x) + ||ci∗||Neq

i∗ (x) ]/∆t = ρc2
s∆Si (10)
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Here ∆Si is the area (or rather the length in 2-D) of the side of the Wigner-Seitz
cell which is normal to ei. Using above definition of the links of the dual lattice,
we have ∆Si = ||oi||.

Using Eq.(9) the constraint Eq.(10) is satisfied if:

wi =
c2
s∆t2||oi||
2∆V ||ei|| (11)

With the volume of the triangle being ∆V = (a + b)c/2, and the definitions
of oi and ei, we obtain the weight factors:

w1 =
c2
s∆t2

(a + b)b
(12)

w2 =
c2
s∆t2

(a + b)a

w3 =
c2
s∆t2

c2 − ab

From computing the moments of the equilibrium particle density distribution
feq

i = wiρ:
∑

i

feq
i = ρ (13)

∑
i

ei,αfeq
i = 0

∑
i

ei,αei,βfeq
i = ρc2

sδαβ

we observe that these moments are equal to the moments of the Maxwell-
Boltzmann distribution for a quiescent fluid. In an earlier paper we have shown
that if the Maxwell-Boltzmann constraints hold up to second order, the Lattice
Boltzmann scheme will be consistent with diffusion [11].

Because the constraints hold for any admissible triangle (with all angles
smaller than π/2) we expect that also Lattice Boltzmann schemes for irregu-
lar grids with triangular lattice cells will be consistent with diffusion with an
isotropic diffusivity tensor Dαβ = Dδαβ . In the following section this hypothesis
is analysed further by investigating the equivalence of our Lattice Boltzmann
scheme with a Finite Volume scheme formulated for diffusion on an irregular
Delauny triangular grid.
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3 Equivalence with Finite Volume

In a previous paper [5] we have shown that for convection-diffusion on rectan-
gular Bravais lattices the Lattice Boltzmann scheme is equivalent with a Finite
Volume schemes (Lax-Wendroff), if the relaxation parameter ω = 1. For this
special case the Lattice Boltzmann equation reads:

fi∗(x + ei, t + ∆t) = feq
i (x, t) (14)

Here we investigate whether this equivalence still holds for diffusion on (ir-
regular) triangular grids. Herbin and Labergerie [10] have presented a Finite
Volume scheme for convection diffusion on Delauny triangular grids. We briefly
discuss how to construct such a scheme for diffusion.

The Finite Volume scheme solves the diffusion equation for the centre points
of triangular control volumes, which is located at the intersection of the orthog-
onal bisectors of the triangles, similar to the grid shown in figure 1. The Finite
Volume scheme solves the discretisation of the diffusion equation integrated over
the triangular control volume. Using the Gauss theorem the integrated diffusion
equation becomes the mass balance for the triangular control volume:

∂tM(xV ) = −
∑

a

Ja(xV ) (15)

Here M(xV ) =
∫

V ρ(x)dx = ρ̄(xV )∆V (xV ) is the total mass contained in the
control volume V at location xV . Ja(xV ) is the mass flow rate across the side a
of the triangular control volume, which is an approximation of the flux through
side a:

Ja(xV ) = −
∫

a

D∇ρ(x) · nadσa (16)

Here na is the outward point normal vector of side a.
The mass flow rate is approximated as follows:

Ja(xV ) = −D
[ρ̄(xV + ea)− ρ̄(xV )]

||ea|| ||oa|| (17)

with ||oa|| =
∫

a
dσa the length of side a. Using Euler forward time integration,

and the above flux approximation the Finite Volume scheme can be written in
Finite Difference form:

ρ(xV , t + ∆t)− ρ(xV , t)
∆t

=
∑

a

D
[ρ̄(xV + ea)− ρ̄(xV )]

||ea||∆V (xV )
||oa|| (18)

To check the equivalence of the above Finite Volume scheme with the Lat-
tice Boltzmann scheme for ω = 1, we rewrite our LB equation (14) in Finite
Difference form:

ρ(xV , t + ∆t)− ρ(xV , t) =
∑
i>0

[feq
i∗ (xV + ei, t)− feq

i (xV , t)] (19)
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Using the expression of the weight factors Eq.(11) we have:

ρ(xV , t + ∆t)− ρ(xV , t)
∆

=
∑
i>0

c2
s∆t||oi||

2∆V ||ei|| [ρ(xV + ei, t)− ρ(x, t)] (20)

Observe the similarity of Eq.(20) and Eq.(18). These Finite Difference equa-
tions are equivalent if the diffusion coefficient is equal to D = 1

2c2
s∆t. This is

consistent with the regular expression of the diffusion coefficient in LB schemes
(with ω = 1):

D = c2
s(

1
ω
− 1

2
)∆t (21)

Here we have proven that the above defined Lattice Boltzmann scheme is
consistent with diffusion (at least for ω =  1), by its equivalence Finite Volume
scheme formulated for diffusion on irregular triangular grids[10]. Evenmore, the
flux approximation of the LB scheme and Finite Volume scheme are equivalent,
and hence we expect that the expression for the equilibrium distribution also
holds for unstructured triangular grids. Because the Finite Volume scheme for
unstructured triangular grids is consistent with diffusion upto second order, we
expect that the LB scheme with the above formulated equilibrium distribution
is also consistent with diffusion even for the general case ω ≥ 1. Consequently,
even for unstructured grid with the Maxwell-Boltzmann constraints one can con-
struct schemes for isotropic diffusion (upto second order accurate) for irregular
triangular grids.

In order to obtain a proper formulation of the Lattice Boltzmann equation for
irregular grids in the general case of ω %= 1, we investigate in this section the
Lattice Boltzmann scheme for diffusion on an irregular 1-D lattice. We assume a
D1Q3 lattice with particle velocities c0(x) = 0, c1(x), and c2(x), with in general
c1(x) %= c2(x). The vectors connecting lattice site at x to adjacent lattice sites
are denoted as e1(x) = +c1(x)∆t, and e2(x) = −c2(x)∆t.

Note, that before collision the particles move with velocities +c2(x) and
−c1(x), and after propagation they move with −c2(x) and +c1(x). In the text
below we will denote the particle velocities in general as ci(x), with the index i
referring to the lattice link ei - rather than the velocity direction as is common
in Lattice Boltzmann schemes for Bravais lattices.

A next difference with LB schemes for Bravais lattices is that schemes for
irregular lattices must be formulated in Ni(x, t), the particle number distribution
function of particles in a lattice cell moving with velocity ci, instead of the
particle density distribution fi(x, t). Ni(x) is defined as Ni(x) = fi(x)∆V (x),
with ∆V (x) is the volume of lattice cell. Note that ∆Vi(x) is proportional to
c1(x) + c2(x):

∆V (x) = S(c1 + c2)∆t (22)
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We derive the Lattice Boltzmann scheme following the procedure proposed
in our previous paper [5] and above. From the existence of a global equilibrium
with uniform density ρ(x) = ρ0 follows:

wi(x)∆V (x) = wi∗(x∗)∆V (x∗) (23)

Remind, that the same constraint for triangular Bravais lattices lead to Eq.(9).
For irregular rectangular grids we have found the same relation as Eq.(23). Anal-
ysis shows that it holds also for unstructured triangular grids.

From the demand of isotropy of pressure (which is also a second rank tensor
like the diffusivity tensor) follows:

wi(x) =
c2
s

ci(x)(c1(x) + c2(x))
(24)

Note, that the isotropy constraint for triangular Bravais lattices lead to Eq.(11).
Again with the above weight factors the equilibrium distribution satisfies the

Maxwell-Boltzmann constraints Eq.(13).
For the precise formulation of the Lattice Boltzmann equation for irregular

lattices we analyse the problem of diffusion in a density field with a constant
gradient Γ :

ρ(x) = ρ0 + Γx (25)

In our previous paper [5] we have taken the ansatz that the non-equilibrium
part of the distribution function fneq

i has the same form as for regular lattices:

fneq
i (x) = wi(x)

ei(x)Γ
ω

(26)

Note that fneq
i is linear wi(x)ei(x), which is an eigenvector of the collision op-

erator [11, 6]. Using Eqs. (22-24) we obtain for i = 1, 2:

Nneq
i (x) = ±c2

sΓ∆t2S

2ω
(27)

and Nneq
0 = 0.

Hence, in the case of a density field with a constant gradient, the non-
equilibrium part of the particle number distribution function is independent of
the lattice spacing.

The total particle number distribution function associated with the density
field with constant gradient, is

Ni(x, t) = Neq
i (x, t) + Nneq

i (x, t) = ∆V (x)wi(x)[ρ0 + Γx +
ei(x)Γ

ω
] (28)

This distribution should be a steady state solution of the Lattice Boltzmann
equation. Further analysis of this requirement shows how to construct the algo-
rithm of the Lattice Boltzmann for irregular lattices.
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Algorithm

Before the collision one computes the projections of the particle number distri-
bution function on the eigenvectors |1, 1, 1 > and |0, +1,−1 > of the collision
operator, which are associated with the total mass of particles M and the non-
equilibrium particle mass flow rate. We define these projections as

M(x, t) =
∑

i

Ni(x, t) (29)

I(x, t) = N1(x, t)−N2(x, t)

The collision process is in effect an relaxation of the non-conserved moment
I:

I ′(x) = (1− ω)I(x) (30)

Here ω is the relaxation parameter normally appearing the LBE for Bravais lat-
tices. Note 1−ω is the eigenvalue of the collision operator associated the eigen-
vector |0, +1,−1 > [11, 6]. For convenience sake we assume the other eigenvalues
to be zero. For the propagation the post-collision particle number distribution
function is constructed from M(x) and I ′(x):

N ′
i(x, t) = wi(x)M(x) ± 1

2
I ′(x, t) for i = 1, 2 (31)

which is propagated to the adjacent cell

Ni∗(x + ei(x), t + ∆t) = N ′
i(x, t) (32)

This sequence of collision and propagation should produce a steady state
solution:

Ni(x, t + ∆t) = N ′
i∗(x− ei(x), t) = Ni(x, t) (33)

Substitution of the steady state solution Eq.(28) in the above equation gives:

wi(x)∆V (x)ρ(x) − c2
sΓ∆tS

2ω
=

wi∗(x∗)∆V (x∗)[ρ(x) − Γ ei]− (1 − ω)
c2
sΓ∆t2S

2ω
(34)

Using Eq.(23) we obtain:

wi(x)∆V (x)ei =
1
2
c2
s∆t2S (35)

and using Eq.(22) we obtain the same expression for wi as stated in Eq.(24).
Hence with the above scheme there exists a steady state solution for diffusion in
a density field with a constant gradient.
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To determine the diffusion coefficient of our new LB scheme for irregular
lattices, we analyse the mass flow rate through the boundaries of the Wigner-
Seitz cell. The mass flow rate should follow Ficks law: J = −DΓS. In the above
example of a density field with a constant gradient the mass flow rate J is:

J(x +
1
2
ei(x), t) =

Ni∗(x∗, t)−Ni(x, t)
∆t

= (36)

∆V (x∗)wi(x∗)[ρ(x) + Γei(x) +
e∗i(x∗)Γ

ω
]−∆V (x)wi(x)[ρ(x) +

ei(x)Γ
ω

]

Using Eq.(23) we obtain:

J(x +
1
2
ei(x), t) = −ΓSc2

s[
1
ω
− 1

2
]∆t (37)

Hence, the diffusion coefficient is accordingly Eq.(21). Note, that Eq.(21) is iden-
tical to that of LB schemes for Bravais lattices [11]. From this result we conclude
that our LB scheme formulated by Eqs.(30-32) is not much different from LB
schemes formulated for Bravais lattices. The only difference between their for-
mulations is that the meaning of the indices of the distribution functions Ni

is different. In LB schemes for Bravais lattices the indices refer to propagation
direction, and in LB schemes for irregular grids the indices refer to particular
links between adjacent lattice sites.

5 Conclusions

In this paper we have presented the building blocks of a Lattice Boltzmann
scheme for diffusion on unstructured triangular grids. This new scheme follows
the same concepts as the classical LB schemes for Bravais lattices. During prop-
agation the discrete velocity set of the lattice gas particles move them directly
to adjacent lattice sites. Collision is modelling by a relaxation towards an equi-
librium distribution. As for all LB schemes on Bravais lattices, the equilibrium
distribution can be derived from the Maxwell-Boltzmann constraints [12].

First we have derived the LB scheme and its equilibrium distribution for a
triangular Bravais lattice. For the special case of the relaxation parameter ω = 1
we have shown the equivalence with a cell-centered Finite Volume scheme for
diffusion on triangular grids [10]. The Finite Volume scheme is shown to be
consistent with diffusion and accurate upto second order, and even for unstruc-
tured grids. Hence, we can conclude that the LB scheme is also consistent with
diffusion for unstructured triangular grids.

The formulation of LB schemes for irregular grids is a bit different from
LB schemes for Bravais lattices. The scheme should be formulated with particle
number distribution functions instead of particle density distribution functions.
Furthermore, the indices of the distribution functions refer to particular links,
instead of propagation directions. Such a formulation we have presented for an
irregular 1-D lattice for the general case of ω = 1. The algorithm of the scheme
follows the two main steps of LB schemes for Bravais lattices: the particles
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evolve according to collision and subsequent propagation. The collision process
is described in the moments representation. Above we have presented only the
moments M and I associated with the particle mass density and particle mass
flux (which is not conserved). Taking into account higher order moments influ-
ence only high order accuracy of the LB scheme [6]. Non-conserved moments
(like I) are relaxed towards zero with a rate equal to the eigenvalue 1−ωn of the
associated eigenvector of the equilibrium distribution. From the new moments
M and I ′ the post-collision particle distribution function N ′

i(x, t) is constructed,
which will be propagated subsequently.

The most important point we like to make is the equivalence of the LB scheme
with Finite Volume schemes for the special case of ω = 1, which holds even for
unstructured triangular grids in the diffusion case. Hence, from the existence
of Finite Volume schemes for hydrodynamics on unstructured grids one can
conclude that proper LB schemes can be formulated also for hydrodynamics on
unstructured grids, which still fit in the conceptual framework of LB schemes
for Bravais lattices.
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