Abstract
The study proposes a modeling method for nonlinear system, which predicts characteristics of the ECG R-R interval variation. For determining model equation, we adopted genetic programming method that the chromosome represented the model equation consisting of time-delayed variables, constants, and four arithmetic operators. By the genetic programming the regressive nonlinear equations were produced and evolved to find the optimal model equation which could simulate the spectral, statistical and nonlinear behavior of the given R-R interval dynamics. Experimental results showed that the evolutionary approach could find the equation that simulates the spectral and chaotic dynamics of the given signal. Therefore the proposed evolutionary approach is useful for the system identification of the nonlinear biological system.
Chapter PDF
Similar content being viewed by others
References
Albano, A. M., Muench, J., Schwartz, C., Mees, A. I., Rapp, P. E.: Singular-value decomposition and the Grassberger-Procaccia algorithm: Phys. Rev. A. 38 (1988) 3017–3116
Broomhead, D. S., King, G. P.: Extracting qualitative dynamics from experimental data. Physica D 20 (1986) 217–236
Gleik, J.: Chaos: Making a New Science: New York: Viking Penguin Inc. (1987)
Grassberger, P., Procaccia, I.: Measuring the Strangeness of Strange Attractors. Physica D 9 (1983) 198–208
Gulick, D.:Encounters with Chaos: McGraw-Hill Inc. (1992)
Hamilton, Patrick S., Tomkins, Willis J.: Quantitive investigation of QRS detection rules using the MIT/BIH arrythmia database:IEEE Transactions on Biomedical Engineering. BME-33 (1986) 413–422
Kaplan, D., Glass, L.: Direct test for determinism in a time series:Phys. Rev. Lett. 68 (1992) 427–430
Koza, J.:Genetic Programming II: Automatic Discovery of Reusable Programs: The MIT Press (1994)
Liebovitch, L. S., Toth, T.: A Fast Algorithm to Determine Fractal Dimensions by Box Counting: Phys. Lett. A 141 (1989) 386–390
Mead, W. C., Jones, R. D., Lee, Y. C., Barnes, C. W., Flake, G. W., Lee, L. A., O’Rourke, M. K.: Prediction of Chaotic Time Series using CNLS-Net-Example: The Mackey-Glass Equation: Proc. of the Workshop on Nonlinear Modeling and Forecasting. 12 (1990) 39–71
Mees, A. I.: Tessellation’s and dynamical systems’: Proc. of the Workshop on Nonlinear Modeling and Forecasting. 12 (1990) 3–24
Pool, R.: Is It Healthy to Be Chaotic: Science. 243 (1989) 604–607
Rigney, D. R., West B. J.: Chaos and Fractal in Human Physiology: Scientific American. (1990) 35–41
Sano, M., Sato, S., Sawada, Y.: Global Spectral Characterization of Chaotic Dynamics’: Prog. Theor. Phys. 76 (1986) 945–948
Kim, B. Y., Park, K. S.: Modeling of nonlinear sequence based on the Modified Genetic Algorithm: Nonlinear Analysis. 36 (1999) 707–720
Davis, Lawrence: Handbook of Genetic Algorithms: Van Nostrand Reinhold. (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kim, B.Y., Chang, Y.S., Park, K.S. (2003). A Nonlinear Model for Predicting ECG R-R Interval Variation Based on the Evolutionary Computation Approach. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Dongarra, J.J., Zomaya, A.Y., Gorbachev, Y.E. (eds) Computational Science — ICCS 2003. ICCS 2003. Lecture Notes in Computer Science, vol 2657. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44860-8_39
Download citation
DOI: https://doi.org/10.1007/3-540-44860-8_39
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40194-0
Online ISBN: 978-3-540-44860-0
eBook Packages: Springer Book Archive