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Abstract. A fortran code PBSOLVE is created for numerical solution of
a linear Poisson - Boltzman equation. Finite difference discretization and
successive overrelaxation (SOR) iterations on the sequence of grids are
used to obtain the approximate electrostatic potential on the grid. Error
control is provided by comparison of solutions on nested grids. A parallel
version of the PBSOLVE which exploits the message passing interface
(MPI) has also been constructed. The performance of the program and
the efficiency of parallelization have been tested on the small peptide
Met-Enkephalin.

1 Introduction

The biologically active 3D structure of the protein results from several types
of complicated interactions which occur between the atoms comprising the pro-
tein molecule as well as between the protein and the surrounding solvent. These
include a solvent hydrophobic effect, Van der Waals forces, electrostatic interac-
tions, hydrogen bonding, entropy contributions due to the chain flexibility, etc.
The importance of the interactions between the solute protein and the solvent
is emphasized by the fact that the main force, driving the protein molecule to
the folded state is a hydrophobic force [1]. The contribution to the free energy
of folding from the intramolecular interactions is relatively easy to calculate by
means of molecular dynamic simulations, Monte Carlo procedures or using a
molecular force-field calculations. Much more severe is a problem of calculation
of the solvent contribution to the free energy because of the tremendous number
of degrees of freedom.

There are two basic approaches to calculate the free energy of the solvation
of proteins. In the molecular solvent models, hundreds of thousands of water
molecules and salt ions are introduced explicitly into simulation. This approach
is, of course, the most realistic and precise from the standpoint of physics. The
difficult point here is that the simulation processes often fail to converge to rea-
sonable results in feasible time period. In the so called continuum solvent mod-
els, the solvent is treated as a continuous medium, the average characteristics of
which are close to those of the real solvent. Though cumbersome by themselves,
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the simulations with continuum solvent models require several orders of mag-
nitude less computational time than the simulations with molecular models. In
present, paper we will discuss only the continuum models of the solvent.

Since water is a highly polar liquid, the electrostatic interactions play a cen-
tral role in the behavior of protein-solvent system [2]. Yet an accurate calculation
of these interactions is the most complicated problem. While in the calculations
in vacuo the simple Coulomb potential may be used successfully, the calculation
of the electrostatic interactions between water and solute protein remains a very
difficult task. One of the methods currently used is based on the classical elecro-
dynamics, where the energy of the electrostatic field of charged systems in the
water environment is calculated by solving the Poisson-Boltzmann equation.

The purpose of the present work is to develop an effective computer code for
solving numerically the Poisson-Boltzmann equation for protein molecule placed
in the water.

2 Theoretical Background

2.1 Protein-Solvent Interaction Energy

Perhaps the simplest way to calculate the electrostatic interactions of protein
with solvent (Fig.1) is to assume a distance dependent electrostatic constant and
calculate the electrostatic energy by the formula [3].

ey =n-2"

2 [(s7)? + 257 + 2]e*". (1)

Here empirical values for the parameters D and s are being used such that on
the large distances ¢ takes the value of that of bulk water (~ 80) and the value
= 2 for the short distances (protein interior space). However, this approach is
oversimplified. One of the obvious drawbacks is that the atoms which are close
to each other in the space may not occur in the protein interior simultaneously,
and reversely, the atoms which are far from each other in space may occur both
in the protein interior.

Generally speaking the protein-water interactions, may be treated on the
macroscopical level by exploiting two kinds of interactions: electrostatic inter-
actions for polar components and surface tension for non-polar components [2].
So, the total free energy of protein-water system may be written as a sum of two
terms

Giot = Gnp + G- (2)

Here G, is the non-polar part of the free energy of solvation; it actually includes
two parts: the free energy of creating a cavity of the shape and size of the molecule
in the bulk solvent, and the energy of Van der Waals interactions between solute
molecule and the solvent. G, is the part of free energy which corresponds to
the mono- and multipole electrostatic interactions between charged atoms of the
protein and the surrounding polar solvent molecules or solved salt ions.
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Fig. 1. The protein molecule in the solvent.

The non-polar interactions are usually calculated under the assumption that
the free energy of solvation of the uncharged hydrocarbons are proportional to
the surface accessible area of the atoms [4].

an = Zz 0:S;. (3)

Here the sum is over all atoms of the protein, S; is the solvent accessible area [5]
of the ¢ — th atom, o; is some coeflicient of proportionality determined by exper-
iments on solvation of small hydrocarbons (octanol is the most typical solute).
The values of ¢ are different for each type of atoms and depend strongly on the
forcefield within which they have been calculated. The quantities S; are con-
formational dependent and their calculation requires a complicated geometrical
algorithm for evaluation of the solvent-accessible surface of the protein molecule
[5]. Two types of algorithms are now exploited for this purpose: an analytical
algorithm by Connolly [6] or some numerical algorithm, such as double cubic
method [7].

The second term in Eq.(2) requires exact calculation of the electrostatic
polarization energy of solved molecules and their dielectric environment. This is
usually done by solving the Poisson-Boltzmann equation for the charged particles
placed in the dielectric medium [8].

2.2 The Poisson-Boltzmann Equation

Exact classical approach for the electrostatic interactions in solution is based on
the solution of Poisson-Boltzmann equation [8].

V - [e(r)V - ¢(r)] — e(r)h(r)? sinh[p(r)] + 4np(r) /KT = 0. (4)
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Here ¢(r) is the dimensionless electrostatic potential in units of kT'/q, with ¢
being an electrical charge, T' is the temperature, £(r) is the electrostatic constant,
p(r) is the fixed charge density, and h(r)> = 1/\? = 8mq¢?I/ekT with X, I, k,
and e being, respectively, the Debye damping length, the ionic strength of the
solvent, the Boltzmann constant, and the elementary charge. Quantities ¢, €, h
and p are all functions of the vector r.

For small electrostatic fields Eq. (4) may be linearized

V[V - 6(r)] = e(r)h(r)*é(r) = —4mp(r)/kT. (5)

In the case of a single point charge placed in the medium with uniform dielectric
constant €(r) = €, and equilibrium distribution of the ions, Eq.(5) has a simple
spherically symmetrical solution

o(r) =q——, (6)

which becomes the Coulomb’s law ¢(r) = ¢/r, when there are no solved ions in
the solvent (h(r) = 0).

However, due to its compact packing the protein molecule creates another
medium (protein interior) with the electrostatic constant different from that
of the bulk solvent (Fig.1), and thus the electrostatic constant of the whole
system is not uniform anymore. In the protein interior space ¢ is assumed to be
constant and having the value 1 to 6, according to different authors. In the bulk
solvent medium the value of ¢ is taken to be close to the electrostatic constant
of water (= 80). So the electrostatic constant is discontinuous along the protein-
water boundary. In this case we have a boundary problem [9] and should use
the numerical methods to solve the Poisson-Boltzmann equation. Usually finite-
difference methods are used for this purpose.

Another problem about solving the PB equation is very complicated shape of
the surface along which the electrostatic constant has discontinuity. This means
that one can not set the boundary conditions analytically and it is necessary
to assign a pointer to each mesh point of the difference scheme, which shows
whether a given site belongs to the protein interior or to the bulk solvent. For
this, again, a solvent accessible surface must be evaluated.

After the solution of the Poisson-Boltzmann equation is found one can cal-
culate the energy of the electrostatic field of distributed charges by the formula

Gy = [ Erotroln). (7)

Here the integration is over the whole space, or, in the case of the numerical
solution, over the calculating domain, where the PB equation has been solved.

Obviously, this approach for calculating the solvation free energy is reason-
able only in the cases when one does not have to calculate the protein energy too
many times within one simulation. In simulations such as molecular dynamics
or Monte Carlo, one has to sample many hundreds of thousands conformations,
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and to solve numerically the non-linear equation (4) is not feasible. One of com-
putationally cheaper approaches is the Born approximation method which is
based on the Born treatment of the monoatomic spherical ions in the dielectric
medium [10].

3 Results

3.1 The Calculating Domain

The solution of Poisson-Boltzmann equation for the proteins in the water envi-
ronment is a typical boundary problem [9]. It means that we deal with a system
in which some quantities (the electrostatic constant in the present case) is dis-
continuous along some surface. In the case of the proteins the boundary is very
complicated and it is impossible to define it analytically or even with arbitrary
precision. This difficulty imposes some specific limitations on the definition of
calculation domain. When one tries to define the boundaries of the calculation
domain very close to the molecular surface this introduces very large errors in
the solution because the molecular surface itself is defined not exactly. On the
other hand it is not recommended to take very large calculation domain because
involving a large water volume increases the calculation time. In our calculations
we define the domain as a cube which includes the protein molecule and has a
volume of 30 — 40% larger than the protein.

3.2 The Structure of the Computer Code PBSOLVE

Input: ksf- the number of atoms in the molecule,

zsf(ksf), ysf(ksf), zsf(ksf) - Cartesian coordinates of atoms
in the molecule,

rsf(ksf) - the Van der Waals radii of the atoms,

perboz - percent of molecule size increment to set a computational
domain,

numq - number of the atom where the charge is placed,

q - the value of the charge .

Definition of the calculating domain: the size of calculating domain is deter-
mined by the size of minimal box containing the molecule. Each dimension of
the box is increased by the value of perbox and round-off to 14 to have an initial
grid size h of 1A.

Construction of the grid: As mentioned above, the size of calculating domain
is determined by the size of minimal box, containing the molecule. Each dimen-
sion of the box is increased by the value of perboz and round-off to 14 to have
an initial grid size h of 1A. After the computational domain is defined, a mesh
is constructed:
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x(m), y(n), z(k) - the coordinates of grid points,

u(m,n,k) - the values of electrostatic potential at grid points,

c(m,n,k) - each cell of the grid has an indicator showing whether
that cell belongs to the protein interior or not,

f(m,n,k) - the fixed charge density.

Iterations: The method of successive overrelaxation (SOR) [15] is used for
solution. Iterations are stopped when the relative error in solution is less than
eps. Computations are organized in the multigrid approach by using the sequence
of grids. This method provides quick convergence as well as a better control and
analysis of obtained approximations. First the problem is solved on the mesh
with step size h = 14 by SOR iteration process. The obtained solution is then
interpolated on the mesh with a grid size half of the original and new iteration
is performed. Similarly, the solution on the fine grid with mesh size of 0.25Ais
obtained.

Output: u(m,n, k) - the electrostatic potential on the fine grid,
z(m), y(n), z(k) - coordinates of grid nodes,
h - the step size.

3.3 Parallel Realization of Finite Difference Scheme

We use a finite difference scheme to solve our 3d problem by the overrelaxation
method. We find the solution in the three-dimensional perpendicular area. The
natural way for parallelization of the solution process is to divide the computa-
tion domain into p subdomains by horizontal planes, where p is the number of
the processors to be involved in the solution (See Fig.2.).

One would expect that the solving process might be accelerated p times by
parallel computation in a cluster with p processores. Of course this is only an
idealization; in reality the computers need some preparatory work and a certain
amount of time for the data transfer between the processors. Each processor
does calculation only at the points in its “own” area and the necessary data
are exchanged between the processors which need them. We have been solving
the boundary problem by using three different types of grids. At first we tried
to implement the iteration process using the approach that all processors work
simultaneously and independently, each one being calculating the function at the
mesh points inside its own subdomain. In this case the overrelaxation method
does not lead to correct results at the mesh points near the boundaries of sub-
domains. The problem is that since the function values have been calculated
independently by different processors, the whole dataset is not consistent and
needs to ensure the continuity of the function values on the boundaries of ad-
jacent subdomains. We have overcome this problem (see below) by increasing
number of iterations. For example, the number of iterations on the first grid was
increased from 43 for 1 processor to 81 for 8 processors.

The modified working schedule of the processors looks as following:
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X

Fig. 2. Partitioning of the calculating domain for parallelization.

— For each grid we divide the calculating domain into p subdomains. Then we
organize a multistage calculation process in this way:

In the first cycle only the first processor works on the whole mesh and
after finishing his work it transmits the function values at the points
on the last (the upper) level of the mesh in the first subdomain to the
second processor.

In the second cycle first two processors work. After the first step of this
process, the second processor transmits the function values on at the
points in the first (lower) level of the mesh to the first processor which
uses these data to calculate of its last-level data. After finishing the
calculation the first processor transmits its last level data to the second
processor.

In the third cycle the first three processors work. After the first step of
this process is over, the second and the third processors transmit their
first level data to the previous processor (2. to 1. and 3. to 2.) which uses
these data to calculate its last level data. After finishing the calculation
each processor (except the last one) transmits its last level data to the
next processor.

etc.

In the pth cycle and up to the end of the solution process all processors
are working. After the first step of this process each processor (except the
first one) transmits its first level data to the previous processor (2. to 1.,
3. to 2. etc.) which uses these data to calculate its last level data. After
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finishing the calculation each processor (except the last one) transmits
its last level data to the next processor.

e After finishing the iteration process each nonzero processor sends its
calculated data to the first processor (its number is 0) and after data
completization the first processor sends whole solution to other ones
and the process is repeated for the next grid after interpolating of the
previous result to use it in the start iteration.

In this work we use:

— a cubical solution domain,

— three grids with the equidistant nodes (the number of nodes was 21, 41, and
81 in turn),

— the steps of each direction were identical (h = 1,0.5,0.25).
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Fig. 3. Parallelization efficiency vs number of computers.

The MPT package [16] was used for the parallel implementation of the algorithm.

The parallelization efficiency is shown in Fig.3. One can see that the paral-
lelization is effective up to 4 processors. For larger number of processors, data
transfer time is increased drastically and the efficiency drops.

4 Conclusions and Future Prospects

Future prospects deal with including the nonlinear term in iteration process
to obtain the solution of nonlinear PB equation. The relaxation processes used
to solve linear equation may be applied to the nonlinear equation. Next im-
provement of the program concerns the treatment of the solute-solvent inter-
face boundary. There are two ways to improve the mapping of the interface
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boundary onto the grid. The first one is multilevel mesh refinement technique
[17]. The method allows for accurate calculation of electrostatic potential over
domains with local mesh refinement patches. The second is the exploitation
of well-developed finite [18] and boundary [19] element techniques to complex
molecular surface. To describe in more exact way the behavior of the potential
at the infinity, we may use coupled boundary integral finite elements formalism.

As shown in Fig.3 the efficiency of parallelization decreases drastically after 4
processors. Of course we donot satisfy with such a result. Recently, we developed
a parallelization method for protein energy calculation [20] which is working
highly effective up to 30 processors. Now the work is underway to find new
parallelization strategies for solution of Poisson-Boltzmann equation which can
provide a higher efficiency.
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