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Abstract. This paper focuses on modeling the behavior of virtual
agents living in a virtual 3D world. Our aim is to apply the most typical
human behavior features to our virtual agents so that they behave as
realistic as possible. To this end, a new architecture for the behavioral
engine that incorporates a number of these typical characteristics of hu-
man behavior is introduced. This new proposal allows the virtual agents
to interact among them and with the environment in a quite realistic way.
The main features of this new architecture, such as perception, knowl-
edge management, motion control and action selection (using internal
states, world information, goals, and others) are carefully analyzed in
the paper. Finally, some relevant functions (those describing sensations
such as tiredness, agent’s resistance and recovery capacities, happiness
and anxiety) and parameters (those determining the vision range or so-
ciability) are also described in the paper.

1 Introduction

One of the most exciting current applications of computer graphics and virtual
reality is the simulation and animation of virtual worlds. They are commonly
used in the entertainment industry, ranging from virtual and augmented reality
in movies to video games. Although it is unanimously accepted that the quality
of the current computer generated scenes is very high, there is still a long way
ahead to handle the behavior of the virtual agents specially for real-time ap-
plications. A major restriction in these applications is that virtual agents must
satisfy a twofold objective: on one hand, they must react instantaneously to
user’s actions. On the other hand, they must interact with other virtual agents
and the surrounding environment in an intelligent way. For the first requirement,
virtual agents should be controled by users. For the second one, virtual agents
must have the capability to take decisions by themselves.
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Several architectures have been recently proposed to fulfill a compromise be-
tween both requirements (see Section 2 for details). Most of them consist of
a large set of deterministic rules and an inference engine able to make deduc-
tions from the input sentences (either provided by the user or acquire from the
information acquisition subsystem). From this point of view, they can be clas-
sified as rule-based expert systems. The complexity of these systems is mainly
determined by the number of rules and the design of the inference engine. So-
phisticated systems also include several subsystems for different tasks such as
learning, information acquisition, coherence control, action executation, etc.

In general, these systems suffer serious limitations: rule-based systems do not
deal with uncertainties because objects and rules are treated deterministically.
In other words, similar conditions and knowledge always yield the same output.
This is a totally deterministic scheme in which what virtual agents can do is to
follow user’s instructions only. If we do not know in advance what is going on
in the future is only because we are not able to store and manipulate the large
number of rules on-the-fly. However, in real life uncertainty is the rule rather
than the exception. It is well-known that human behavior often depends on a
number of internal factors associated with each human and different from those
of anyone else. In addition, external factors can also model the human behavior.
For instance, human beings placed in the same environment and subjected to
the same conditions can react in a very different way, depending on a number of
different factors: internal states, physical condition, environmental conditions,
etc. Therefore, this set of internal and external factors should be taken into
account in order to create a more realistic animation of virtual humans. This is
the aim of the present work.

The structure of this paper is the following: in Section 2 we present some
previous work in this field while Section 3 describes our new architecture for the
behavioral engine. This section also includes a brief description of each subsystem
of this behavioral engine. Some implementation technical details are given in
Section 4. Finally, Section 5 closes the paper with the main conclusions and
some further remarks.

2 Previous Work

Several researchers have worked in behavioral animation of virtual agents dur-
ing the last few years. At the beginning emphasis was put on the animation and
control of human motion [13,22]. Most of the work at that time was based on the
so popular nowadays motion capture systems. The reader is referred to [15] for a
recent survey on this topic. More details can be found in, among others, [1,2] and
references therein. Subsequently, more attention was devoted to the integration
of motion and behavior of the virtual agents [4,5,7,12,16,17,18,21] with applica-
tions to real-time virtual environments [3,8,10,11]. Most recent developments in
the field, as those of Prof. Thalmann and collaborators, include the possibility to
give the virtual actors some kind of autonomy without losing control [6,14,19].
In addition, more sophisticated systems incorporating complex features such as
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Fig. 1. Virtual agents evolving in a playground: (left) two children playing; (right)
some adults chating, walking and doing physical exercices.

perception, knowledge, reasoning and learning have been recently developed by,
among others, Prof. Terzopoulos and his group at the University of Toronto[9,
20]. As shown in the next paragraphs, many of these features have also been
incorporated into the system presented in this paper.

3 Behavioral Engine Architecture

Since our primary goal is the accurate animation of complex behavioral features
of virtual agents we will focus on describing the behavioral engine only. To this
aim, let us consider a typical scene of a virtual 3D world, namely, a playground
such as that shown in all figures throughout the paper. In an open environment
like this, our virtual agents can find many different things to do: children can
play, as those shown in Figure 1(left), a couple of adults can talk to each other,
some people can make physical exercices while others are just talking a walk
around, as shown in Fig. 1(right). The most important point here is that all
these actions are performed by the virtual agents themselves without any user
intervention, furthermore, with no external control at all.

The key to achieving this level of complexity is to create virtual agents which
are totally autonomous in the sense that they incorporate all they need to evolve
in an independent but still very realistic way. In particular, our behavioral engine
architecture consists of a set of subsystems to perform specific tasks such as:

– to capture information from the sorrounding environment. This task will be
performed by the perception subsystem (see Section 3.1),

– to analyze the world information acquired by the perception subsystem and
then to update the knowledge base accordingly. This task is performed by
the analyzer subsystem described in Section 3.2,

– to store the new world information captured by the sensors and then filtered
by the analyzer subsystem into the knowledge base subsystem (see Section
3.3),
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– to update some internal states such as tiredness, happiness and others, that
are managed by the internal states subsystem (see Section 3.4),

– to determine the next goals and sort them by some prescribed criteria. This
task is achieved by a combination of the goal engine subsystem and the goal
controler subsystem described in Section 3.5,

– to move on the scene. To this end, a motion subsystem has been created that
allows the agent to walk, turn, stay upright, sit down, do physical exercises
and avoid obstacles, among others (see Section 3.6).

A scheme of our behavioral engine architecture is shown in Figure 2. All these
subsystems are briefly described in the next paragraphs.

Perception
subsystem

Knowledge Base
     subsystem

Sensors

     Goal
 controler
subsystem

G1 G2 G3

Predefined information
Sensors information
(LMS)-Term Memory
others....

 Analyzer
subsystem

3D world

  Motion
  control
subsystem

 Internal
   states
subsystem

Tiredness
Happiness
Anxiety
Sociability

    Goal
  engine
subsystem

Fig. 2. Behavioral engine architecture scheme

3.1 The Perception Subsystem

This system includes a set of individual sensors so that each virtual agent is
able to analyze the environment, capturing the most relevant information and
sending it to the analyzer. At the time of this paper, the vision is the unique
human sense actually incorporated into our virtual agents. By this we mean
that a virtual agent placed in any arbitrary environment is able to take a look
at the neighborhood and recognize the different things within. This recognition
includes the determination of distances and positions of the different objects of
the scene, so that the agent can move in this environment, avoid the obstacles,
identify other virtual agents and take decisions, as it will be shown later. To
fulfill our aim of simulating reality as accurate as possible, each virtual agent
can effectively see the objects placed just in front and beside, but not the objects
placed behind the agent (although the agent can always turn on the left/right
and see the objects, as any human being can also do). Further, each agent has a
predefined vision range (given by a numerical threshold value of the distance),
and hence, objects far away from the agent can be considered as visible for that
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agent only if the distance from the agent to the object is less than such threshold
value. Otherwise, the object becomes invisible for the agent even although it
could eventually be visible for other agents at the same scene and distance.
This vision threshold also depends on the agent, and its corresponding value
is determined by the user during the initialization step. Note that eagle eye,
near-sighted and even blind individuals can be easily simulated in our scheme.

3.2 The Analyzer Subsystem

As remarked above, this subsystem receives the world information acquired by
the perception subsystem and then analyzes it to update the knowledge base
accordingly. In its turn, a new entry in the knowledge base might modify the
previous analysis and, consequently, the agent behavior as well. On the other
hand, the analyzer can modify the goal controler subsystem when, for example,
new information acquired by the sensors or coming from the knowledge base is
attained. This is a reasonable assumption, as human behavior changes to adjust
to new circumstances and/or knowledge.

3.3 The Knowledge Base Subsystem

This subsystem is basically a database including all the relevant information.
This information comes from many different sources. On one hand, some infor-
mation is provided at the initialization step. This initial information tells the
agent about him/herself (his/her sex, name, age, etc.) or others (friends, col-
leagues). This information is static, meaning that it cannot be modified during
the simulation process.

Once the simulation is launched, new information is generated at each step
of the running process. This dynamic information is also stored in a different
field of the knowledge base. Finally, each agent has short, medium and long-
term memory. For example, let us suppose that our virtual agent is talking a
walk and sees a bank in the park. If after a brief span the agent is getting tired,
he/she will look for a bank to sit down. Short-term memory allows him/her to
recall not only that there is a bank in the park but also its relative position
and distance with respect him/herself. Hence, the agent is able to go directly
towards the bank and find it very quickly. On the contrary, if the agent decides to
walk longer, short-term memory information is removed and only a part of this
information will be transferred to the medium-term memory. Thus, the virtual
agent recalls he/she has seen a bank nearby, but the information about distance
and position is not available anymore. As a consequence, the agent is forced to
explore around him/her in a random-like way. As the span increases, even this
information is lost and after some days, the agent can only use the long-term
memory to recall that he/she went to a park with a bank somewhere. Finally,
even this information is removed from memory after a long time.
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3.4 The Internal States Subsystem

This subsystem manages some internal states of the virtual agent. Currently,
only four internal states are implemented in the system: tiredness T , happiness
H, anxiety A and sociability S, which are functions of different variables. The
tiredness T starts from an initial value Tini ∈ [0, 100] and then changes as the
time t goes to infinity. Basically, this function T increases when the virtual agent
is moving or doing some kind of physical effort, whereas it decreases when the
agent is resting (for example, when the agent sits down or stays exactly at the
same place for a while). The function T can be expressed as:

T (R, r, t) =
∞∑

n=1

[gn(R, t) + hn(r, t)] (1)

where gn(R, t) is a function of the resistance capacity R of the virtual agent and
the time t, and hn(r, t) depends on the recovery capacity r of the agent and also
on the time t and n is used to indicate the number of local maxima of function T .
In other words, the tiredness is seen as a combination of two different functions
gn and hn which account for the tiredness and the recovery spans, respectively.
Each time the agent moves, the function gn varies as:

gn(R, t) = Exp

{
92
200

[
(t + 200) − 2

n
R

]
− 4.6

}
− 1 (2)

which is a strictly increasing function while hn is set to 0. This means that when
a virtual agent moves, he/she is always getting tired (clearly, a very reasonable
assumption). The agent can move until this T = 100, when the agent stops the
physical activity (gn set to 0) and the tiredness T starts to decrease through the
recovery function hn.

Usually, activation of either gn or hn (note that they are never activated si-
multaneously) implies a change in agent’s goals. For example, when the tiredness
is too low (let us say, Tini = 10) the agent is plenty of energy and hence, anxious
to walk, run or do some kind of physical effort in order to decrease its energy
level (or equivalently, to increase his/her tiredness T ). After a span, the tiredness
reaches an upper threshold value Tsup < 100, and the agent immediately starts
to look a place to rest (perhaps, a bank to sit down). Note that this value Tsup

is strictly less than 100 in order to give the agent the chance to move and look
for such a place. Otherwise, tiredness would be equal to 100 and the agent has
not energy at all, thus forcing him/her to stay upright (to sit down on the court
is absolutely forbidden in our urban park).

Another internal state is happiness. It increases when the agent is enjoying
the activity he/she is doing at that time. For example, when children are playing
with the seesaw (See Fig. 1(left)) its happiness function increases a lot. After
reaching an upper threshold value Hsup, children are getting bored because they
are doing the same activity for a long time, and suddenly happiness H starts to
decrease. Of course, there are many different ways to become happy and they



A New Architecture for Simulating the Behavior of Virtual Agents 941

depend on the particular agent we are dealing with. Some people can enjoy talk-
ing to their friends, while others will prefer to walk alone, play with something,
read the newspaper or something else.

The third internal state, anxiety, is a measure of the frustration caused by
trying to make something and failing in this attempt. For instance, the seesaw
requires two people to play with. If a child is alone but he/she wants to play with
the seesaw, he/she sits down on it and waits for another child to play together. If
nobody is going to play with the child, he/she becomes anxious, that is, his/her
anxiety function A increases abruptly.

Finally, the sociability function S measures agent’s wishes to socialize. Due
to the difficulty to associate this factor with an analytic expression, S is assigned
a constant value, which is set during the initialization step.

3.5 The Goal Engine and Goal Controller Subsystems

The goal engine subsystem is the component that updates, sorts and finally
stores agent’s goals into a priority list. Currently, our agents are able to do a
very limited number of things, such as: (1) do nothing (default agent’s goal); (2)
walk around; (3) sit on a bank; (4) do physical exercices; (5) play alone with
a wheel; (6) talk to others, and (7) play with the seesaw with others. All these
goals are illustrated in Figure 3.

Firstly, priority criteria are determined by agent’s internal states. For exam-
ple, if an agent is not very tired, T ≤ 70, he/she could choose among goals 2,
4, 5, 6 and 7. Depending on the sociability level, goals 6 and 7 might be re-
jected/accepted (low/high values of S). Also, the happiness will determine the
feasible goals, as the agent will prefer the goal which gives him/her the highest
level of happiness. Finally, the anxiety for pursuing a goal and to fail is other
factor that could modify the elements of the list of goals as well as its order in
the priority list.

Once the lists of goals and priorities are defined, they are sent to the goal
controler subsystem. This component will determine which goals the agent is
actually going to get. Firstly, this subsystem check for those goals that cannot
be carried out and consequently must be rejected. For example, if the agent is
tired, he/she will look for a bank to sit down. If there is no seats available or
they are not free at this time, the agent must modify his/her goals. This leads to
the concept of feasibility, that is used to check which goals are actually feasible
at any time. From this point of view, the goal controler subsystem acts like a
filter modifying the goals and priorities received from the goal engine subsystem.

3.6 The Motion Subsystem

Once the goals and priorities are defined by the goal controler subsystem, this
information is sent to the motion subsystem. This component is responsible for
all the motion routines, including avoiding static obstacles, avoiding dynamic ob-
stacles, walking, sitting-down, playing with the seesaw, playing with the wheel
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Fig. 3. This figure illustrates different goals the virtual agents can do: they can walk
around, play with either the wheel or the seesaw, talk to others, sit on the bank and
do physical exercices

and doing physical exercices. Some much subtler motion routines, such as com-
peting routines and others, are also incorporated in our system. They are not
described here because of limitations of space. However, agents motion is still
very simple and further work is currently being developed to create more and
better motion routines.

4 Implementation of the System

The behavioral engine described in the previous paragraphs as well as all graph-
ical output have been implemented in C++. Since our focus is the simulation
of virtual agents’ behavior, we do not worry too much about the quality of the
graphical environment. Thus, instead of using the OpenGL graphics library or
similar we decided to create everything. The obvious advantage of this “au-
tonomous” solution is that it gives us more degrees of freedom in making deci-
sions and allows us for a better control. However, it requires a very important
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programming effort because all non-specific tools need to be developed. For ex-
ample, problems such as collision detection among objects, algorithms for hidden
surfaces and the design of agents, objects and environments (to quote only three
examples) were to be solved. The counterpart is that the behavioral engine is
totally integrated into the graphical module. As a consequence, any new im-
provement in the behavioral engine is instantaneously reflected in the graphical
output, avoiding the use of sockets, TCP/IP or any other communication and/or
file transfer protocols, which could eventually lead to substantial delays during
the real-time simulation process.

5 Conclusions and Further Remarks

The core of this paper is the accurate simulation of human behavior by virtual
agents living in a virtual 3D world. To this end, the paper introduces a new archi-
tecture for the behavioral engine that incorporates a number of the most typical
human behavior actions. This new proposal allows the virtual agents to interact
among them and with the environment in a quite realistic way. Some remarkable
features of this new architecture, such as perception, knowledge management,
motion control and action selection (using internal states, world information,
goals, and others) are carefully analyzed in the paper. Finally, some relevant
functions (those describing sensations such as tiredness, agent’s resistance and
recovery capacities, happiness and anxiety) and parameters (those determining
the vision range or sociobility) are also described in the paper.

Although the system presented here could be a remarkable first step, there
is still a long way to walk. On one hand, we expect that future versions will
include a better graphical output, including textures, shadows, reflections and
illumination models. At this time, we are using OpenGL to incorporate all these
graphical improvements. On the other hand, the accurate simulation of human
behavior requires to modify the system substantially. The list of new functions
and parameters to be defined is virtually infinite, and it is still unclear nowadays
which are the functions modeling most of the human actions and decisions. These
and other tasks, such as the addition of new sensations, feelings, beliefs and
capabilities (such as speech) to the virtual agents, the improvement of agents’
motion, knowledge base and deduction engine and a more accurate modeling of
many human behavior functions are the following steps to be done in this work.
The obtained results will be reported elsewhere.
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