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Abstract. In this paper, an improved algorithm is presented for the
NP-complete problem of reconfiguring a two-dimensional degradable
VLSI array under the row and column routing constraints. The proposed
algorithm adopts the partial computing for the logical row exclusion
so that the most efficient algorithm, cited in literature, is speeded up
without loss of performance. In addition, a flaw in the earlier approach
is also addressed. Experimental results show that our algorithm is
approximately 50% faster than the above stated algorithm.
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1 Introduction

The mesh-connected processor array has a regular and modular structure and
allows fast implementation of most signal and image processing algorithms. With
the advancement in VLSI (very large scale integration) and WSI (wafer scale in-
tegration) technologies, integrated systems for mesh-connected processor arrays
can now be built on a single chip or wafer. As the density of VLSI and WSI
arrays increases, the probability of the occurrence of defects in the arrays during
fabrication also increases. These defects obviously affect the reliability of the
whole system. Thus, fault-tolerant technologies must be employed to enhance
the yield and reliability of VLSI/WSI arrays.

There are generally two methods for reconfiguration in fault-tolerant tech-
nologies, namely, the redundancy approach and the degradation approach. Var-
ious strategies to restructure a faulty physical system using the redundancy
approach are described in many papers, e.g.,[1–12]. Degradation approach uses
as many fault-free elements as possible to construct a target system. The fi-
nal dimension is flexible and depends on the needs of the application. Usually,
a maximum dimension is desirable. Literatures [13–15] have studied the prob-
lem of reconfiguring two-dimensional degradable arrays. They have shown that
most problems that arise under the constraint row and column rerouting are
NP-complete.

In this paper, we consider the reconfiguration problem of two-dimensional
degradable VLSI/WSI arrays. It is defined as follows [13–15].
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Given an m× n mesh-connected host array H with the fault density ρ (0 ≤
ρ < 1), integers r and c, find a m′ × n′ fault-free subarray T under the row and
column rerouting scheme such that m′ ≥ r and n′ ≥ c.

The latest work for this problem is the algorithm in [15], which is denoted
as RCRoute in this paper. This algorithm is dominated by two sub-procedures
named Logical Row Exclusion (LRE) and Greedy Column Rerouting (GCR),
respectively. The time complexity of each sub-procedure is O((1 − ρ) · m · n).
The routing manner in GCR leads to reconfiguring two neighboring fault-free
elements lying in same physical row into the same logical column. But the related
architecture does not support this kind of the routing. In this paper we point out
this flaw and repair it. In addition, we also present a partial computing approach
for the logical row exclusion. The new approach reduces the time complexity of
LRE from O((1 − ρ) ·m · n) into O((1 − ρ) · n). Thus, we improve RCRoute in
running time, without loss of performance. Experimental results show that the
improved algorithm is approximately 50% faster than RCRoute.

2 Preliminaries

This section gives the definitions and the notations used in this paper.
In this paper, the original VLSI/WSI array that has been manufactured is

called a host array. This host array may contain faulty elements. A degradable
subarray of the host array, which contains no faulty element, is called a target
array or logical array. The rows (columns) in the host array and target array are
called physical rows (columns) and logical rows (columns), respectively. row(e)
(col(e)) denotes the physical row (column) index of element e. H (S) denotes the
host (logical) array. Ri denotes the ith logical row. Using the same assumptions
as in [13][14][15], in this paper two neighboring elements in the host array are
connected by a four-port switch. All switches and links in an array are assumed
to be fault-free since they have very simple structure.

In a host array, if e(i, j+1) is a faulty element, then e(i, j) can communicate
with e(i, j+2) directly and data will bypass e(i, j+1). This scheme is called row
bypass scheme. If e(i, j) can connect directly to e(i′, j+1) with external switches,
where |i′ − i| ≤ d, this scheme is called row rerouting scheme, d is called row
compensation distance. The column bypass scheme and the column rerouting
scheme can be defined similarly. By limiting the compensation distance to 1, we
essentially localize the movements of reconfiguration in order to avoid complex
reconfiguration algorithm. In all figures of this paper, the shaded boxes stand
for faulty elements and the white ones stand for the fault-free elements.

3 Algorithms

In this section we point out a flaw in RCRoute[15] and repair it. Then we present
our algorithm denoted New RCRoute in this paper.
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3.1 Updating RCRoute

For the row and column rerouting scheme, the latest efficient work is the algo-
rithm RCRoute[15]. This greedy algorithm consists of two procedures namely
Row First and Column First. Column First is invoked after running Row First.
Column First is identical to Row First except that the roles of rows and columns
are interchanged. Therefore, Row First plays a key role in the description of
RCRoute. For the detail description of Row First, see [15].

There are two key sub-procedures in Row First, denoted as LRE and GCR.
The sub-procedure LRE selects one row to be excluded from the set that was
previously selected and uses it to compensate for faulty elements in its two
neighboring rows. Let Mi denote the maximum number of logical columns that
pass through two consecutive rows Ri and Ri+1, where i ∈ {0, 1, . . . , k − 1}.
Let Mγ = min

0≤i≤k−1
Mi. LRE first calculates Mγ and selects the row Rγ , and

then decides whether Rγ or Rγ+1 will be excluded. Let X denote the maximum
number of logical columns that pass through Rγ−1 and Rγ+1. Let Y denote the
maximum number of logical columns that pass through Rγ and Rγ+2. If X > Y ,
then row Rγ is selected for exclusion, otherwise, Rγ+1 is excluded.

GCR is used for finding a target array that contains a set of selected logical
rows. It reroutes the fault-free elements to form logical columns. The successor
of the fault free element u in Ri is selected from Adj(u) in a left-to-right manner,
where Adj(u) = {v : v ∈ Ri+1, v is fault-free, |col(u) − col(v)| ≤ 1}. For the
detailed description of the procedure, see [14, 15].

The sub-procedures LRE and GCR are executed iteratively until the row-
based target array is found. LRE tests O((1 − ρ) ·m · n) valid interconnections
in the m × n host array in a row by row fashion, and GCR tests these valid
interconnections column by column. Obviously, they have same time complexity
O((1 − ρ) ·m · n).

As can be seen from [15], the four-port switch model has a very simple
architecture. But it is due to this simple construction that provides less functions
that the switch model does not support reconfiguring two neighboring fault-
free elements lying in same row into same logical column. Assume Rγ is to
be excluded by subprocedure LRE. Then Rγ will be used to compensate for
faulty elements in its two neighboring rows, Rγ−1 and Rγ+1, i.e., each fault-free
element e(γ, j), 1 ≤ j ≤ n, will be used to compensate e(γ − 1, j) or e(γ + 1, j)
if they are faulty. After compensation, The subprocedure GCR will be executed
on {R1, R2, · · · , Rγ−1,Rγ+1, · · · , Rm} to find the current target array. However,
it is possible that two neighboring fault-free elements in Rγ will be rerouted into
same logical column by GCR. That is the flaw of RCRoute.

We correct RCRoute by adding the constraint row(u) < row(v) into the
definition of set Adj(u), i.e., let Adj(u) = {v : v ∈ Ri+1, v is fault-free,
|col(u) − col(v)| ≤ 1 and row(u) < row(v)}. The constraint limits the elements
in the result logical column, in the strictly increasing order of their physical row
indices. This prevents the above conflict when GCR runs.
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3.2 Partial Computing for Logical Row Exclusion

Assume R1, R2, . . . , Rk (initially, k = m) are the previously selected logical rows.
In order to select one row, say Rl, to be excluded in the current iteration, LRE
takes O((1 − ρ) · k · n) time to calculate M1,M2, . . . ,Mk−1 and takes O(k) to
select the minimum Mγ resulting in l = γ or γ + 1 according to the compensa-
tion approach. In Row First[15], LRE does not reuse the previous calculation of
Mi, 1 ≤ i < k. In fact, except for Ml−2, Ml and Ml+1, these Mi calculated in
the previous iteration are also available in the current iteration as the compen-
sations by Rl only affect Rl−1 and Rl+1. We only need to update Ml−2, Ml and
Ml+1. Hence, we simplify the sub-procedure LRE into New LRE (Fig. 1 (left))
in order to avoid the repeat calculations of Mi except for Ml−2, Ml and Ml+1.
The initial values of each Mi can be calculated out of the body of while-loop
in Row First[15]. Obviously, this simplified approach saves the running time of
RCRoute but does not affect its harvest since the strategy for the selection of
the row to be excluded has not been changed. By simple analysis, the running
time of LRE in qth iteration of Row First is reduced from O((1 − ρ) · q · n)
to O((1 − ρ) · n) since only Ml−2, Ml and Ml+1 need to be updated, where
1 ≤ q ≤ m. In the other hand, New LRE still uses the same compensation
strategies as described in RCRoute[15] after the row Rl is excluded. The time
complexity of the compensation is O((1 − ρ) · n). Hence, the time complexity
of New LRE is O((1 − ρ) · n), which is far lower than O((1 − ρ) · m · n), the
time complexity of LRE. Figure 1 shows the formal description of the improved
algorithm.

Procedure New_ Logical_Row_Exclusion ( H, S, l, m ); 
begin 
           
           /*  select the minimal Mγ    */ 
         Min := ∞ ; 
         for i := 1 to m-1 do   
                If  Mi < Min then  begin   Min := Mi;  γ := i  end; 
 
           /*  select Rl to delete and compensate */ 

         Greedy_Column_Rerouting (H, Rγ -1, Rγ +1, X); 
         Greedy_Column_Rerouting (H, Rγ , Rγ +2, Y); 
         if  X < Y  then  l := γ +1   /*  delete row Rγ+1  */ 
                        else   l := γ ;  /*  delete row Rγ  */ 
         Row_Reroute(H, Rl-1, Rl, Rl+1)[6]; /* compensation with Rl*/ 
 
            /*  update M l –2,, M l –1, M l  and   M l +1    */ 
         Greedy_Column_Rerouting (H, Rl -2, Rl-1, M l -2);   
         M l-1  := ∞ ;   /* M l -1 will not be considered in the next iteration */ 
         Greedy_Column_Rerouting (H, Rl -1, Rl+1, M l );   
         Greedy_Column_Rerouting (H, Rl+1 , Rl+2, M l +1);   
 
end.          
 

Procedure New_Row_First( H, m, n, r, c, row ,col ); 
/*  Rerouting based on rows  */ 
begin 
         row_first_fail:= false; 
        S={ R1, R2 , …,  Rm }; 
        for i=1 to m-1 do /* calculate each Mi */ 
                 Greedy_Column_Rerouting (H, Ri, Ri+1, Mi ); 
       Greedy_Column_Rerouting (H, S, n' ); /* for initial solution*/ 
         /* n'= maximum number of logical columns through the rows in S */ 
       m':=m; 
       while (m' ≥  r) and (n' < c) do 
       begin 
     New_Logical_Row_Exclusion(H, S, γ, m' ); 
     Delete row Rγ from S; 
     Greedy_Column_Rerouting ( H, S, n' ); 
     m':=m'-1; 
       end; 
       if (m' ≥ r) and (n' ≥ c)  
       then 
                begin    row:=m';   col:=n';    end 
       else  row_first_fail:=true; 
end; 
 

Fig. 1. The formal description of the procedure New LRE and New Row First
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3.3 Main Algorithm and Complexity

For the description of the main algorithm, we first describe a procedure called
New Row First, which is used to find a target array with maximum size based
on the row. Let m′ be the number of logical rows and n′ be the number of logical
columns of the target array. The current logical array is S = {R1, R2, · · · , Rm′}.
Initially, all rows in the host array are selected for inclusion into the target
array. Thus, each logical row in S is also a physical row. The formal description
of New Row First is shown in Fig. 1 (right).

In New Row First, the code before the while-loop initializes the data struc-
tures, calculates allMi and gets the initial target array. The running time needed
by all these steps is bounded by O((1 − ρ) ·m · n). In the while-loop, New LRE
runs in O((1 − ρ) · n) and GCR runs in O((1 − ρ) ·m · n). Hence, the while-loop
runs in O((m − r) · (1 − ρ) ·m · n), i.e., the time complexity of New Row First
is O((m− r) · (1 − ρ) ·m · n).

Similarly, we can describe a procedure New Column First to find a target
array with maximum size based on the column. Its time complexity is O((n −
c) · (1 − ρ) ·m · n).

The structure of the main algorithm, denoted as New RCRoute, is the same
as that of RCRoute. but the subprocedures have been improved. The largest
array derived from procedures New Row First and New Column First is taken
as the target array for H. The time complexity of algorithm New RCRoute is
O(max{(m−r), (n−c)}·(1−ρ)·m·n), which is the lower bound of the complexity
for row and column rerouting[15].

4 Experimental Results

We report our experimental results in this section. We have implemented
the algorithm RCRoute (corrected version) and the improved algorithm
New RCRoute in C on a personal computer—Intel Pentium-III 500 MHZ. The
implementations of the two algorithms are modified accordingly to find maximal
target arrays and maximal square target arrays. In our experiments, harvest
and degradation, formulated in [13],[14] and [15], are calculated for each target
array. In order to make a fair comparison between New RCRoute and RCRoute,
we keep the same assumptions as in [14],[15], i.e., the faults in random host ar-
rays were generated by a uniform random generator; The fault size in host array
is from 0.1% to 10% for the experiments. Both algorithms are tested with the
same random input instances. The running time and the size of each target array
obtained by New RCRoute is compared with the corresponding array obtained
by RCRoute[15]. Table 1 summarizes the experimental results for the random
host arrays with different sizes. The improvement in running time is calculated
by

(1 − running time of New RCRoute

running time of RCRoute
) × 100%.

The calculations required to arrive at solutions for maximal target array en-
compass the solution for maximal square target array. Hence, without loss of
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Table 1. The comparison of running time for 20 random instances

Performance Running Time
Host Fault Harvest Degrad. RCRoute New RCRoute Improve
Array Size (%) (%) (%) (s) (s) (%)

64 × 64 4 0.1 98.53 1.56 0.296 0.150 49.3
64 × 64 40 1.0 96.29 4.65 0.296 0.149 49.7
64 × 64 409 10.0 84.52 23.91 0.286 0.143 50.0

128 × 128 16 0.1 98.85 1.24 2.313 1.191 48.5
128 × 128 163 1.0 97.15 3.82 2.307 1.189 48.5
128 × 128 1638 10.0 84.61 23.84 2.213 1.152 47.9

256 × 256 65 0.1 99.24 0.86 18.316 9.441 48.5
256 × 256 655 1.0 97.56 3.41 18.160 9.369 48.4
256 × 256 6553 10.0 84.37 24.07 17.340 9.067 47.7

512 × 512 262 0.1 99.41 0.69 147.291 76.148 48.3
512 × 512 2621 1.0 97.92 3.06 145.004 75.081 48.2
512 × 512 26214 10.0 84.89 23.60 137.259 72.033 47.5

generality, we collect the running time only in the case of finding maximal tar-
get array. Table 1 shows the running time comparisons for the maximal target
array. For each random instance, the running time required by New RCRoute is
significantly less than that required by RCRoute. For example, for the host array
of size 256 × 256 with 655 fault elements, the running time for New RCRoute is
9.369 seconds, while it is 18.160 seconds for RCRoute. The improvement in run-
ning time is 48.4%, which is nearly equal to 50%. Except for small size instances
such as 64× 64, increase in fault density in the host array leads to less improve-
ment in running time as more backtracking is needed in routing. For instance,
for the 512 × 512 host array with the 26214 fault elements, the improvement
in running time is 47.5%, which is a little less than 48.3%, the improvement
running time for the 512 × 512 host array with the 262 fault elements.

We can conclude from the analysis above that our algorithm New RCRoute
reduced the running time by approximately 50%, especially, for low density of
faults in the host arrays, without loss of harvest.

5 Conclusions

We have presented a degradation approach for the reconfiguration in VLSI/WSI
arrays under the rerouting constraint row and column rerouting. We have pro-
posed a new strategy for the row selection. The new strategy binds well for high-
speed realizations. For different sized host arrays, our algorithm has maintained
harvest and degradation while reducing the running time by approximately 50%.
Method to overcome the flaw in one of the recent contributions in this area was
also made. The improved algorithms have been implemented and experimen-
tal results have been collected. These running time results clearly reflect the
underlying characteristics of the improved algorithm.
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