
Compiler Directed Parallelization of Loops in Scale for
Shared-Memory Multiprocessors

Gregory S. Johnson1 and Simha Sethumadhavan2

1 Department of Computer Sciences &
Texas Advanced Computing Center

The University of Texas at Austin, Austin TX 78712, USA
johnson@tacc.utexas.edu

2 Department of Computer Sciences
The University of Texas at Austin, Austin TX 78712, USA

simha@cs.utexas.edu

Abstract. Effective utilization of symmetric shared-memory multiprocessors
(SMPs) is predicated on the development of efficient parallel code. Unfortu-
nately, efficient parallelism is not always easy for the programmer to identify.
Worse, exploiting such parallelism may directly conflict with optimizations af-
fecting per-processor utilization (i.e. loop reordering to improve data locality).
Here, we present our experience with a loop-level parallel compiler optimization
for SMPs proposed by McKinley [6]. The algorithm uses dependence analysis
and a simple model of the target machine, to transform nested loops. The goal
of the approach is to promote efficient execution of parallel loops by exposing
sources of large-grain parallel work while maintaining per-processor locality. We
implement the optimization within the Scale compiler framework, and analyze the
performance of multiprocessor code produced for three microbenchmarks.

1 Introduction

Effective exploitation of multiprocessor systems is hampered by the complexity of de-
veloping efficient parallel code. It is not always intuitively clear to the programmer which
regions of a code are parallel and how each might be tuned to achieve high per-processor
performance.

Consider the simple loop nest in Fig. 1a. Spatial and temporal locality considera-
tions favor ordering the loops as shown. However, achieving the maximal granularity
of parallelism favors moving the i loop to the outer position (since the i loop is parallel
while the j loop is not). Doing so distributes neighboring iterations of the i loop across
processors resulting in shared cache lines. Though processors update distinct values of
a, a given a[i] is present in the cache on multiple processors. Thus a write to an a[i]
by one processor incurs the expense of invalidating the previous value of that a[i] in
the caches of the other processors. Advanced compiler techniques capable of addressing
contradictions involving locality and the granularity of parallelism are required.

McKinley proposes a compiler optimization algorithm which promotes efficient
execution of loops on SMP machines [6]. It does so by exposing sources of large-grain
parallel work while maintaining per-processor locality. The algorithm computes the cost

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2659, pp. 946–955, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Compiler Directed Parallelization of Loops 947

for k 1 to n by strip do
 for j 1 to m do
 for i k to min(k + strip - 1, n) do
 a[i] a[i] * b[i,j]
 endfor
 endfor
endfor

→
→

→

→

for j 1 to m do
 for i 1 to n do
 a[i] a[i] * b[i,j]
 endfor
endfor

→
→

→

(a) (b)

Fig. 1. A simple loop nest is shown in (a). The same loop nest is shown in (b) following the
application of the optimization algorithm. The loop nest has been transformed by strip-mining
and interchange, such that the k loop features large-grained parallelism, while the i loop maintains
good locality

of distinct orderings of the loops in a nest in terms of cache lines used. It then orders the
loops such that those with the most reuse (over the fewest cache lines used) are placed
innermost. Finally, the algorithm selects the outermost legally parallelizable loop, applies
strip-mining, and moves any resulting iterator loop to the outermost position.

Figure 1b is the result of this algorithm applied to the loop nest in 1(a). The i loop
has been strip-mined and the resulting iterator k moved to the outermost position. The
iteration space of the i loop is broken into strip sized contiguous regions. The k loop is
parallel and results in one strip of i per processor (with strip set to the trip count of i /
the number of processors). Locality is maintained within each strip, and the granularity
of the work per processor is maximized (as the parallel loop is outermost).

We develop an implementation of this algorithm within the Scale compiler frame-
work. We then examine the execution time and cache performance of multiprocessor
code produced for several microbenchmarks by the augmented Scale compiler. Our
results indicate that significant performance gains are achievable using a straightfor-
ward implementation of this algorithm. However, we also find that this optimization is
sensitive to loop structure and the availability of robust dependence testing within the
compiler.

We present this work as follows. In the next section we briefly introduce the reader to
the Scale compiler framework, and the specific features which support our optimization
algorithm. The algorithm itself is described in Sect. 3. We illustrate its design by way of
pseudocode and an example showing the transformation of a simple loop nest. In Sect. 4,
we detail the key components of our implementation, showing how each affects the
structure of a loop nest which performs matrix multiply. We examine the performance
of this implementation in Sect. 5. Finally, we relate our work to previous efforts in
parallelizing compilers for SMPs.

2 Scale

The Scalable Compiler for Analytical Experiments (Scale) was developed at the Univer-
sity of Massachusetts, for the purpose of enabling research in compiler optimizations.
Scale includes a modular framework specifically designed to permit new optimizations
to be rapidly prototyped and tested.

948 G.S. Johnson and S. Sethumadhavan

Our selection of Scale is driven by pragmatic considerations as well as the avail-
ability of low-level features which directly support our implementation. Scale includes
frontends for the high-level languages in which many benchmarks are written (C and
Fortran). Additionally, Scale includes key low-level facilities such as dependence anal-
ysis, loop abstractions, reference groups, and a simple model of the host machine. The
relationship between the latter two facilities and our implementation is as follows.

2.1 Reference Groups

To accurately quantify the locality available in a loop, it is necessary to determine which
array references access the same set of cache lines. Scale provides this functionality,
organizing references into groups. Each group corresponds to a set of related references
which exhibit one of the following: spatial locality (references refer to neighboring
data elements), temporal locality (references are loop invariant), or no locality (a single
reference is assigned to its own group). If the size of a cache line is also known, reference
groups can be used to estimate the cost (in cache lines accessed) of a specific ordering
of the loops in a nest.

2.2 Machine Model

Scale implements a simple model of the target machine which includes cache character-
istics such as L1 line size. Given reference groups, cache line size cls, and the trip count
of a loop C, the cost of the loop nest (with the target loop placed innermost) is estimated
as follows. A reference R, representative of a group which appears in the target loop, is
selected. If R is loop invariant, its cost (in cache lines required) in the context of that
loop is 1. Such a reference is likely to be stored in a register. If R varies as a function
of the loop index in the first array subscript dimension, its cost is taken to be C / cls
cache lines (adjusted appropriately for non-unit strides). If R carries no reuse, its cost
is estimated to be cls (a new cache line is required for this reference on each iteration).
The total cost of the nest is the cost of the target loop multiplied by the trip counts of
the outer loops. MemoryOrder and NearbyPermutation (introduced in the next section)
reorder the loops in a nest by cost, such that loops with the most reuse (lowest cost) are
innermost. In practice, this placement very often promotes the best overall reuse [7]. An
example of this approach, applied to a triply-nested loop, is illustrated in Sect. 4.1.

Additionally, we extend the Scale machine model to include a processor count.
During strip-mining, this value is used to divide the iteration count of the target loop
into exactly P strips of roughly equal size. Note that McKinley’s optimization assumes
that the processors are homogeneous, and that each is equipped with a local L1 cache.
In tandem with locality-driven loop ordering, strip size computation based on processor
count insures that the potential for false sharing is minimized. Having set the stage, we
now examine the optimization algorithm itself in greater detail.

3 Optimization Algorithm

Our work is based on an algorithm proposed by McKinley [6]. It utilizes dependence
analysis and a simple model of the target machine, to strip-mine and interchange loops

Compiler Directed Parallelization of Loops 949

INPUT: A loop nest L = {l1, ..., lk}

OUTPUT: An optimized loop nest P

ALGORITHM:

procedure LoopParallelize(L)
MO = MemoryOrder(L)
P = NearbyPermutation(L, MO)
for j = 1, m {outermost to innermost loop of P}

if (isParallel(pj) == true)
rj = StripMine(pj) where rj is the resulting outer loop
markParallel(rj)
if (j != 1) permute rj into the outermost legal position in P
break

endif
endfor

Fig. 2. LoopParallelize reorders, strip-mines, and parallelizes loops in a given nest. The resulting
nest features both large-grain parallel work and good per-processor locality.

in a nest. The goal of the algorithm is to promote efficient execution of parallel loops by
exposing sources of large-grain parallel work while maintaining per-processor locality.

Our implementation utilizes the Scale dependence machinery to identify perfectly
nested loops containing no function calls with unknown side-effects, within a target
procedure. Each such nest is passed to our main optimization routine LoopParallelize,
which may interchange, strip-mine, and / or mark parallel a member loop.

Pseudocode for LoopParallelize is shown in Fig. 2, and is very similar to the cor-
responding routine in [6]. MemoryOrder reorders the loops in a nest such that those
with the most reuse are innermost and those with the least reuse outermost. This rou-
tine employs the Scale reference group data and cache line sizes for the target machine
to compute the cost of each loop in terms of cache lines accessed. In the example in
Fig. 1a, the i loop accesses fewer cache lines than the j loop, and is thus assigned to
the innermost position by MemoryOrder. NearbyPermutation utilizes the dependence
vectors produced by Scale to determine if the loop order proposed by MemoryOrder is
legal (i.e. the vector for the reordered loop is lexicographically positive). If the proposed
loop order is not legal, NearbyPermutation computes a close variation on this ordering
which is legal. Refer to [6] for a full description of NearbyPermutation.

LoopParallelize now examines the newly reordered loop nest for parallelism. Work-
ing from the outermost loop to the innermost, and using the dependence information
provided by Scale, LoopParallelize finds the first loop which is parallelizable. LoopPa-
rallelize strip-mines this loop. Strip-mining breaks the iteration space of the loop into
contiguous "strips". The process converts a single loop into a doubly nested loop. The
inner loop operates as usual, but only over "strip" iterations. The new outer "iterator"
loop iterates over the strips. Strip-mining the i loop in Fig. 1a, results in the new i and k
loops in Fig. 1b. LoopParallelize picks the strip size to be C / P where C is the trip count
of i, and P is the number of processors in the target machine. Kennedy and McKinley
have shown that this approach works well in the case where the iteration space is not

950 G.S. Johnson and S. Sethumadhavan

smaller than the number of processors times the size of a cache line [3]. We assume
this to always be the case. If the resulting iterator loop is not in the outermost position,
LoopParallelize moves it to the outermost legal position (to maximize the granularity of
parallelism), and marks it parallel. This step moves the k loop in Fig. 1b to the outermost
position as shown.

The result of this effort is a set of optimized (where applicable) loop nests, each of
which effectively balances large-grained parallel work with per-processor locality.

4 Implementation

Our augmented Scale compiler implements the McKinley optimization. We illustrate its
behavior by way of application to the matrix multiply C code in Fig. 3a. The subsequent
transformations are detailed step-by-step, through the following subsections. For clarity,
the effect of each transformation is represented in classical C, rather than in the lower-
level form produced by Scale.

4.1 MemoryOrder and NearbyPermutation

Recall that MemoryOrder computes an ordering of the loops in a nest such that those
with the greatest locality over the fewest cache lines are placed innermost. If this loop
order is illegal, NearbyPermutation finds a close variation that is legal, and performs the
actual reordering. Consider the matrix multiply code in Fig. 3a, and assume row-major
storage order. Given the original loop order as <i, j, k>, MemoryOrder computes that
the best locality is achieved with the ordering <i, k, j>. Figure 3b illustrates how this
order is computed, given a cache line size of four array elements, and the cost rules
in Sect. 2.2. Observe that c[i][j] and b[k][j] exhibit spatial locality with loop j placed
innermost, and a[i][k] with k innermost. Also, c[i][j] is loop invariant (temporal locality)
if k is innermost, a[i][k] if j is innermost, and b[k][j] if i is innermost. Clearly the three
reference groups benefit most (in terms of reuse), if loop j is placed innermost, followed
by k and finally i. As this loop order is legal, NearbyPermutation interchanges loops j
and k, resulting in the code seen in Fig. 4a.

for (i = 0; i < 100; i++) {
 for (j = 0; j < 100; j++) {
 for (k = 0; k < 100; k++) {
 c[i][j] += a[i][k] * b[k][j];
 }
 }
}

(a) (b)

reference loop loop loop
group i innermost j innermost k innermos

c[i][j] 100 * 100 * 100 25 * 100 * 100 1 * 100 * 100
a[i][k] 100 * 100 * 100 1 * 100 * 100 25 * 100 * 100
b[k][j] 1 * 100 * 100 25 * 100 * 100 100 * 100 * 100

total cost 2,010,000 510,000 1,260,000

Fig. 3. A straightforward implementation of matrix multiply is shown in (a). The total cost of the
loop nest in terms of cache lines required is shown in (b). A cost is computed for each loop in the
nest to estimate the effect of placing it innermost. The cache line size in this example is 4 array
elements. The table indicates that placing j innermost promotes the most reuse, followed by k
and i

Compiler Directed Parallelization of Loops 951

for (ii = 0; ii < 100; ii += strip) {
 for (i = ii; i < min(100, ii + strip); i++) {
 for (k = 0; k < 100; k++) {
 for (j = 0; j < 100; j++) {
 c[i][j] += a[i][k] * b[k][j];
 }
 }
 }
}

for (i = 0; i < 100; i++) {
 for (k = 0; k < 100; k++) {
 for (j = 0; j < 100; j++) {
 c[i][j] += a[i][k] * b[k][j];
 }
 }
}

(a) (b)

Fig. 4. The loop nest with loops j and k interchanged by MemoryOrder and NearbyPermutation to
exploit greater locality, is shown in (a). The same nest is shown in (b) after applying LoopStripMine
to loop i. The resulting loop ii breaks i into “strips" of size trip count / processor count

4.2 LoopStripMine

Following NearbyPermutation, LoopParallelize strip-mines the outermost parallel loop
(no loop-carried dependencies at the level of that loop, or procedure calls with unknown
side-effects at that level or below), via LoopStripMine. LoopStripMine divides the iter-
ation space of the loop into contiguous "strips", such that each processor of the target
SMP runs roughly equal iterations (one strip). It does so by adjusting the lower and
upper loop bounds to match the "width" of a strip, and encloses the loop in an outer
loop which iterates over the strips. As we allocate one strip per processor, this iterator
loop is used only to demarcate the bounds of the parallel region which is later marked as
such by markParallel. Figure 4b shows the permuted matrix multiply loop nest (Fig. 4a)
following the application of LoopStripMine.

4.3 markParallel

LoopParallelize moves the iterator loop created by LoopStripMine to the outermost
legal position (if it is not already there), and marks it as parallel using markParallel.
markParallel marks the expression node representing the initialization of the loop index
variable, and the loop exit node in the Scale control flow graph representation of the
iterator loop. These nodes demarcate the bounds of the instructions which compose the
target loop, and thus the bounds of the desired parallel region.

The Scale SPARC backend does not currently support multithreaded code. The com-
plexity of modifying it to do so is significant. Instead, we modify the source-to-C emis-
sion routines to replace marked loops with OpenMP parallel regions, as shown in Fig. 5.

5 Results

We examine the performance of our optimizing compiler by analyzing the runtime be-
havior and cache performance of multiprocessor code produced for several microbench-
marks. Specifically, we compare the execution times and cache hit rates of the binaries
over a range of thread counts on a 14-processor Sun Enterprise 5500 SMP machine.
Issues with the C and Fortran frontends used by Scale (neither accepts all legal ANSI
programs), and with the Scale dependence infrastructure, focus our results on three

952 G.S. Johnson and S. Sethumadhavan

#pragma omp parallel firstprivate(ii, i, k, j)
{
 ii = omp_get_thread_num() * strip;
 for (i = ii; i < min(100, ii + strip); i++) {
 for (k = 0; k < 100; k++) {
 for (j = 0; j < 100; j++) {
 c[i][j] += a[i][k] * b[k][j];
 }
 }
 }
}

Fig. 5. The strip-mined matrix multiply code, after the application of markParallel and code
emission. Loop ii has been replaced by an OpenMP parallel region

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 2 4 6 8 10 12 14

ex
ec

ut
io

n
ti

m
e

(s
ec

on
ds

)
ca

ch
e

re
fe

re
nc

es
 /

hi
ts

 (
x1

09)

thread count thread count thread count

Matrix Multiply Fast Fourier TransformConjugate Gradient

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

0 2 4 6 8 10 12 14
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0 2 4 6 8 10 12 14

hand parallelized
auto-parallelized
Amdahl's Law

auto-parallelized
Amdahl's Law

auto-parallelized
Amdahl's Law

references
cache hits

references
cache hits

references
cache hits

auto-parallelized

hand-parallelized

Fig. 6. Execution and cache performance of three benchmarks over multiple threads

microbenchmarks: Matrix Multiply (MM), Conjugate Gradient (CG), and Fast Fourier
Transform (FFT). We perform source-to-source conversion via Scale with loop permu-
tation (MemoryOrder and NearbyPermutation) and loop parallelization optimizations
enabled. The resulting sources are compiled "-O3" with the Sun Forte 6.2 compiler. Our
results are presented in Fig. 6. All measurements are averaged over five runs.

MM multiplies two 800 x 800 integer matrices. CG is a distillation of the kernel loop
from the NAS Parallel Benchmarks (NPB) CG. Our CG loop nest performs an identical
calculation, over the same iteration count as the Class-A version of the NPB CG. FFT
computes the 2D FFT of a matrix with 4096 x 4096 elements. Our implementation
correctly strip-mines and parallelizes the outermost (legally parallelizable) loop in the
kernel nests of each benchmark.Additionally, Scale reorders the loops in MM as shown in
Sect. 4, and (correctly) does not reorder the loops in either CG or FFT. A straightforward

Compiler Directed Parallelization of Loops 953

coding order for the outer levels of the CG and FFT loops matches the locality-driven
ordering recommended by MemoryOrder, and imperfect nesting of the inner levels
prevents more aggressive tuning.

5.1 Execution Time

The top half of Fig. 6 shows the execution performance of the benchmarks on 1, 2,
4, 6, 8, 10, and 12 threads (processor availability prevented collection of 14-thread
timings). The graphs include results for the auto-parallelized code, and predictions based
on Amdahl’s Law. Additionally, the performance of a hand-parallelized version of MM
(straightforward parallelization of loop i, with loop order <i, j, k> as in Fig. 3a) is shown.
Recall that our optimizer also parallelizes i, but reorders the loops as <i, k, j>.

Amdahl’s Law states that the performance of a parallel code is limited by the presence
of even a small fraction of serial code. More precisely: speedup = (s + p) / (s + p / P),
where s is the fraction of the uniprocessor code that must execute serially, p is the fraction
that may execute in parallel, and P is the number of processors. We compute Amdahl’s
Law for our codes on T threads by measuring the execution time on one thread (the
thread creation event demarcates the time required for the serial setup code ss from
the parallel computation time p). We also measure the time st required to generate T -1
threads, and compute Amdahl’s Law with s = ss + st.

Amdahl’s Law might be thought to predict the best possible performance of a given
code on a given number of processors. However, Amdahl’s Law does not consider cache
effects. As a result, we see our auto-parallelized CG outperforming the prediction on 4
and 6 threads! This is likely due to a slight performance boost resulting from a larger
aggregate cache. The cache performance graph for CG supports this. Note that the ratio
of hits to references increases slightly between 4 and 6 threads. In all other cases, our
codes perform nearly (and in the case of MM, very nearly) as well as the predictions.

5.2 Cache Performance

The lower half of Fig. 6 shows the cache behavior of the benchmarks. Total memory
references (dashed lines) and cache hits (solid lines) are shown for the auto-parallelized
codes, and in the case of MM, for the hand-parallelized code as well.

Consider the sizable differences in the cache performance of MM, as a result of
merely reordering the constituent loops. Not only is the total reference count reduced, but
the ratio of hits to references is dramatically improved. Notice too that the improvement
is relatively stable across thread counts. The consistently high hit ratio for the auto-
parallelized code suggests that cache performance was not a significant inhibitor of
parallel efficiency. The overlapping lines in the graph of execution time, for the auto-
parallelized code and that predicted by Amdahl’s Law, supports this.

The sharp increase in references seen on CG and less so on FFT (neither benefits from
loop permutation due to loop structure) as the number of threads increases, underscores
the need for locality optimizations for SMPs. In the next section, we examine other
efforts in this area, including a class of approaches which seek to improve locality around
loop structure which inhibits optimizations such as this one, though at the expense of
portability and complexity.

954 G.S. Johnson and S. Sethumadhavan

6 Related Work

Here, we detail the relationship between our implementation and prior art in locality
optimizations and parallelizing compilers.

6.1 Locality Optimizations

Data Layout Restructuring (DLR) approaches to locality optimization improve the spa-
tial locality of references to datum (typically array elements), increasing cache utilization
and subsequently performance. DLR algorithms are advantageous where complex loop
structure prevents reordering to improve locality. However, the analysis required for DLR
is extremely complex for arrays referenced by more than one loop. Li et al. [5] propose a
generalized framework for configurable DLR. They argue for affine application-specific
arrays instead of a conventional row / column format. Leung [4] proposes an analysis for
static array restructuring, and Chandramouli et al. [2] propose an analysis for performing
dynamic array restructuring with hardware support for memory management. The latter
work is complimentary in nature to the algorithm implemented here.

Program Control Restructuring (PCR) methods alter the control flow of the program
to enhance spatial and temporal locality, thereby improving cache performance. A key
feature of PCR algorithms is that they are less architecture-dependent than their DLR
analogs. The MemoryOrder and NearbyPermutation components of the algorithm we
implement, are PCR transformations. In a related effort, Wolf and Lam [8] propose a
mathematical basis for quantifying reuse, and propose a unified framework for locality-
improving loop transformations including interchange, reversal, skewing and tiling.

6.2 Parallelizing Compilers

Information on commercial parallelizing compilers is only sparsely available. We there-
fore refrain from qualitative comparisons and instead summarize the known [1] general
characteristics of auto-parallelizing compilers. In particular, we focus on the Sun SPARC
compiler suite, as it is closely related to our work.

The SPARC compilers attempt to parallelize do-all loops in Fortran and for loops in
C. Parallel code is generated for loops with integer indices and iteration counts known
at compile time. Serial and parallel code is emitted for loops with iteration counts that
are not known at compile time. The serial code is executed at runtime if the iteration
count is less than that required to overcome the overhead (due to thread creation and
synchronization) of parallel execution. Our implementation attempts to parallelize all
Fortran and C loops, irrespective of profitability. The SPARC compilers are also capable
of performing loop interchange and strip-mine, but it is unclear under what conditions
these are used in tandem with parallelization to reduce false-sharing on SMP machines.

7 Conclusion

We present an implementation of a parallelizing compiler optimization proposed by
McKinley [6]. This optimization restructures loop nests to promote high reuse, while

Compiler Directed Parallelization of Loops 955

enabling maximally-grained parallel work. We analyze the performance of our imple-
mentation by applying it to several microbenchmarks and executing the resulting bina-
ries on a 14-way SPARC-based SMP. Our results indicate that while the relationship
between cache performance and parallel efficiency is complex, each clearly interferes
with the other. Good locality can promote high parallel efficiency (MM), but as paral-
lelism increases, it inhibits aggregate cache reuse (CG, FFT, and to a lesser degree MM).
Strengthening the former effect, and reducing the latter, are key goals of this optimiza-
tion. It, and others like it, offer the potential of increased utilization of large parallel
machines and reduced time-to-solution for multiprocessor codes.

References

1. C. Aoki, P. Damron, K. Goebel, V. Grover, X. Kong, M. Lai, K. Subramanian, P. Tirumalai,
and J. Wang. A parallelizing compiler for UltraSPARC. 1996.

2. B. Chandramouli, J.B. Carter, W.C. Hsieh, and S.A. McKee. A cost framework for evaluating
integrated restructuring optimizations. In Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques, pages 131–141, Spain, September 2001.

3. K. Kennedy and K.S. McKinley. Optimizing for parallelism and data locality. In Proceedings
of the ACM International Conference on Supercomputing, pages 323–334, Washington, DC,
July 1992.

4. S. Leung. Array restructuring for cache locality. Technical Report UW-CSE-96-08-01, Uni-
versity of Washington, Department of Computer Science, August 1996.

5. W. Li and K. Pingali. Access normalization: Loop restructuring for NUMA compilers. ACM
Transactions on Computer Systems, 11(4):353–375, November 1993.

6. K.S. McKinley. A compiler optimization algorithm for shared-memory multiprocessors. IEEE
Transactions on Parallel and Distributed Systems, 9(8):769–787, August 1998.

7. K.S. McKinley, S. Carr, and C. Tseng. Improving data locality with loop transformations.
ACM Transactions on Programming Languages and Systems, 18(4):424–453, July 1996.

8. M.E. Wolf and M.S. Lam. A data locality optimizing algorithm. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation, NewYork, NY,
1991.

	Introduction
	Scale
	Reference Groups
	Machine Model

	Optimization Algorithm
	Implementation
	MemoryOrder and NearbyPermutation
	LoopStripMine
	markParallel

	Results
	Execution Time
	Cache Performance

	Related Work
	Locality Optimizations
	Parallelizing Compilers

	Conclusion

