
A Workÿow Management and Grid Computing
Approach to Molecular Simulation-based

Bio/Nano Experiments

Karpjoo Jeong1, Dongwook Kim1, Moon Hae Kim1,
Suntae Hwang2, Seunho Jung3, Youngho Lim4, and Sangsan Lee5

1 College of Information and Communication, Konkuk University, Seoul, Korea

fjeongk, dwkim, mhkimg@konkuk.ac.kr
2 Department of Computer Science, Kookmin University, Seoul, Korea

sthwang@kookmin.ac.kr
3 Department of Microbial Engineering, Konkuk University, Seoul, Korea

shjung@konkuk.ac.kr
4 Department of Applied Biology & Chemistry, Konkuk University, Seoul, Korea

yoongho@konkuk.ac.kr
5 Supercomputing Center, Korea Institute of Science and Technology Information,

Daejon, Korea

sslee@hpcnet.ne.kr

Abstract. In this paper, we propose an approach to molecular simulation-

based experiments which combines workÿow management and grid com-

puting techniques to address both the computing issue due to the chal-

lenging computation requirement from molecular simulation and the

management issue due to distributed, heterogeneous computing plat-

forms. We present a workÿow management system customized for such

experiments and explain how this workÿow system can be integrated

with computational grids.

Keywords:Molecular Simulation, Grid Computing, WorkÿowManagement

1 Motivations

Molecular simulation is an eþective approach to computing and analyzing be-
haviours of biologically or chemically relevant molecular structures (e.g., pro-
teins, DNA, RNA) easily by software tools such as CHARMM and GAUSSIAN[2,
9] without going through long, complicated, labor-intensive real experiments. In
spite of such apparent advantage, molecular simulation has not been widely used
because it has a challenging requirement for computation which can be satisýed
only by expensive parallel computers.

Compuational grids which aim at combining computing resources from a
number of organizations into large scale parallel/distributed computing plat-
forms give us an economical solution to address the challenging computing issue

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2660, pp. 1117−1126, 2003.
 Springer-Verlag Berlin Heidelberg 2003

1.1 Molecular Simulation-Based Analysis of Bio/Nano Materials

B



of molecular simulation[5, 6, 8]. However, in order to make grid computing tech-
niques eÿective for molecular simulation-based experiments, the following issues
must be addressed:

ÿ Single System Image. Compuational grids are, in nature, wide-area heteroge-
neous distributed systems. Complicated issues involved in heterogeneous dis-
tributed computing must be hidden from scientists whose knowledge about
distributed computing is limited. That is, the single system image is needed.

ÿ Workÿow Management . Molecular simulation-based experiments are com-
posed of various complicated tasks such as molecular structure modelling,
model verþcation, simulation progress monitoring, molecular simulation, sim-
ulation result verþcation. They form a complex workýow in which there are
inter-task dependencies and whose entire execution may take a couple of
months. Managing those tasks properly is already a big burden on scientists
and computational grids enable much more concurrent experiments and cre-
ate much more management burdens on scientists. Therefore, the workýow
mangement support is crucial for eÿective molecular simulation-based ex-
periments on computational grids.

1.2 Brief Review of Conventional Workÿow Systems

Workýow is used to express a complex process as a set of interconnected, smaller,
less complicated component tasks[11]. In various areas such as industrial and
administrative process management and design processes, workýow has success-
fully been applied. Technically, workýow management implies the automated
coordination, control, and inter-task communication.

A workýow instance is an activity involving the coordinated execution of
multiple tasks performed by diÿerent processing entities[15]. These tasks could
be manual, automated, either created speciþcally for the purpose of the workýow
application being developed, or possibly already existing as legacy programs[14].
A workýow process is an automated organizational process involving both human
(manual) and automated tasks.

There are many commercial workýow management systems and research pro-
totypes developed for various applications[18]. These systems are either cus-
tomized for speciþc application domains or designed as general purpose sys-
tems. Both classes of workýow systems fail to satisfy requirements for molecular
simulation-based experiments. Apparently, the former class is not suitable and
the latter class requires furthermore customization for such experiments.

In addition, these workýow systems are not designed to work with com-
putational grids. In the grid computing area, there are currently eÿorts on
application-speciþc groupware systems, but major focuses are still on general
purpose middleware systems[5, 6]. In [1], Buyya, Branson, Giddy, and Abramson
proposed a World Wide Grid-based virtual laboratory system for drug designs.
Although it is aimed at molecular simulation, this system is aimed at processing a
large number of independent docking tasks by computational grids and assumes

1118 K. Jeong et al.



no human interventions. However, our work assumes both human interventions
and the dependency among molecular simulation tasks.

There are research eÿorts on scientiþc workýow systems[4, 14, 17, 20]. Al-
though they address various issues involved in scientiþc workýows and biological
research processes, they do not address those issues speciþcally involved in molec-
ular simulation-based experiments. or furthermore issues on grid computing at
all.

For these reasons, workýow systems customized for molecular simulation-
based experiments and designed to support computational grids must be needed
in order to make molecular simulation a widely-applicable eÿective technique for
various bio/nano research work.

2 Workÿow Model for Molecular Simulation-based

Experiments

We propose a workýow model for the molecular simulation-based experiment.
The model is designed to be simple because the fundamental structure of the
experimental process is not complicated and this simple design makes the system
easy to use. Instead of one of existing workýow systems, we decided to develop
a custom workýow system because most scientists need to use conventional sim-
ulation software tools (i.e., legacy programs widely applied and these tools must
be integrated in a seamless fashion. Furthermore, we aim at design our workýow
system to support grid computing.

The workýow model is deþned to consist of:

ÿ a set of Programs . We assume simulation tools to be registered in the system.
The management and control information about each software are stored in
the workýow system:

{ Program ID. We assume a system-wide unique name for each program.

{ Interaction type. A program can be run as a background process or
requires GUI interactions with the user. The latter class of programs
must be run locally or requires local GUI emulation facilities for remote
execution (e.g., thin client features).

{ Invocation Parameters. They can be default values or must be re-
quired at invocation time.

{ I/O file specification . File names, þle types (e.g., þle extensions)
and þle content viewers are speciþed.

ÿ a set of Tasks . We assume each task to be associated with a program which
is pre-registered in the workýow system. That is, the task is deþned as the
function of the program. The information about each task is:

{ Task ID. We assume a task to have a system-wide unique name.

{ Program ID. The name of the program to execute is speciþed.

{ Invocation parameter values. Values for invocation parameters are
given.

1119A Workflow Management and Grid Computing Approach

B



{ Activation Type. According to the activation condition, tasks are grouped
into two classes: automatically-started and manually-started . The for-
mer class of tasks are is immediately initiated as soon as they are ready
(e.g., all tasks prerequisite to the task are ÿnished). When a task in the
manually-started class is ready, the workþow system sends the user a no-
tiÿcation (e.g., an email message or a popup message in the client GUI,
etc.) and waits for him or her to ask for invocation.

{ Monitoring Flag, Monitoring Program ID and Output File Names.
If this þag is on, then the workþow system shows the user the progress
of the current task. Currently, we simply assume the progress of the
program to be available as appended data in output ÿles. In addition,
we assume a monitoring program which is registered. This monitoring
program periodically read newly appended data in speciÿed output ÿles
and visualize them.

ÿ a set of Task Dependencies .
In our model, tasks are inter-connected and outputs from one task are used
as inputs for another task. We call this a task dependency . A task can have
multiple parent nodes. A task can be started only after all the parent tasks
are ÿnished.

In addition to the execution order, a task dependency deÿnes the mapping

information between the output ÿles of the parent task and the input ÿles
of the child task.

We deÿne a workÿow instance to be a workþow deÿnition for a certain ex-
periment. A workþow instance consists of a set of tasks and a set of task depen-
dencies.

3 Workÿow Management System for Molecular

Simulation-based Experiments

The workþow management system consists of:

ÿ Workflow Engine. The workþow engine manages all the running workþow
instances created by a number of users. The engine schedules tasks for each
workþow instance.

ÿ Workflow Client (GUI). The workþow client provides the user with a GUI
that allows the user to create, monitor, and guide workþow instances for
experiments. This client is written in JAVA and can be invoked on any
platform.

ÿ Workflow Instance Databases. All the workþow instances are managed by
the central repository. Updates to workþow instances are transactional and
therefore resilient to failure.

ÿ Task Template Repository. Tasks frequently used are saved as templates
in the repository. The user can retrieve and update templates for new ex-
periments.

1120 K. Jeong et al.

B



ÿ Program Repository. Simulation tools are registered in the repository. Tasks
are basically an execution of a certain simulation software and when the user
deÿnes tasks, he or she retrieves info about programs from the program re-
spository and uses it to update task templates.

ÿ Program Adaptor. Simulation programs require input ÿles and produce out-
put ÿles. In order to make the workþow system independent of speciÿc sim-
ulation programs, a program adaptor for each simulation program is built
to allow the workþow system to manipulate input and output ÿles in an
uniform way.

ÿ Interface to Computational Grids. The workþow system can delegate
the execution job of molecular simulation software to a computation grid
in a user-transparent way. The workþow system is designed to interoperate
with computational grids through the Globus middleware.

4 Implementation Status and Experiments

4.1 Workÿow System Implementation

Implementing groupware systems like a workþow system is challenging because
those systems are required to support heterogeneous platforms and fault toler-
ance. Without the support for those features, groupware systems are not able to
integrate a variety of legacy systems or may lose the entire intermediate work
on a single failure. In order to address these issues, we use a fault-tolerant dis-
tributed computing system called Persistent Linda [12] as an implementation
computing system.

The Linda model which Persistent Linda is based on allows arbitrary pro-
cesses on distributed heterogeneous platforms to communicate and sychronize
via virtual shared memory called tuple space[3]. Tuple space is a bag of tuples
which are almost equivalent to database tuples in terms of how to access them.
Due to ease of coordination and the support for heterogeneous platforms, Linda
has been used for various groupware systems[7, 19, 21]. Persistent Linda extends
the Linda model to support transactional persistence.

The workþow engine (in fact, a Persistent Linda application system) main-
tains workþow instances (i.e., tasks and task dependencies for an experiment)
in the persistent tuple space and keep track of which tasks are ready to run ac-
cording to task dependencies. For ready tasks that require an user notiÿcation,
it ÿrst informs the user which tasks are ready to run. For those which can be
automatically started, it immediately invokes them.

In Linda, program invocation is executed as tuple space access operations.
Figure 1 illustrates how the workþow engine works. The workþow engine creates
an invocation tuple for a ready task. Then, the program adaptor for the program
required by the task retrieves the tuple and invokes the program. The program
adaptor is designed to handle invocation details about the program.

In the workþow system, a simple shared ÿle system is implemented on Per-
sistent Linda. This shared ÿle system is used to manage I/O ÿles for simulation
programs in a simple way. In this ÿle system, metadata about I/O ÿles is stored

1121A Workflow Management and Grid Computing Approach



Fig. 1. How the Workÿow Engine Works

in tuple space, but real data is managed as ÿles. Program adaptors access I/O
ÿles through tuple space.

The workþow client is implemented in JAVA so that it can be run on any
platform. The client displays the state of an workþow instance, gives notiÿca-
tions, and allows the user to examine intermediate ÿles and to terminate tasks.

There are several molecular simulation software packages[2, 9]. Currently, our
implementation of the workþow system is focused on the CHARMM software pack-
ages and its relevant tools. Therefore, current program adaptors are developed
for those tools. CHARMM is one of the most popular molecular simulation package
that uses the CHARMM force ÿeld to model the energetics, forces and dynamics of
biologogical molecules by the classical method of integrating Newton's equations
of motion.

For CHARMM, crucial input ÿles are inp, psf, crd ÿles and important output
ÿles are out, trj ÿles. The program adaptor for CHARMM is designed to handle
those ÿles automatically.

4.2 Extensions to Computational Grids

In the design described in Section 4.1, the workþow engine directly interacts with
program adaptors. In this section, we present how the workþow system supports
computational grids.

In the grid computing-based design, the workþow engine and program adap-
tors can be located in diýerent organizations which require authentication for
remote communication. In such wide area environments, the workþow engine
interacts with program adaptors via the grid gateway system. The grid gateway
system consists of:

1122 K. Jeong et al.



ÿ Gateway Agent. The gateway agent plays the role of the delegate of a pro-
gram adaptor. It receives an invocation request from the workÿow engine,
passes the request to the gateway server and waits for results from the server.
When it receives results, then it sends them to the workÿow system.

ÿ Gateway Server. The gateway server manages program adaptors and waits
for invocation requests from gateway agents on a number of organizations.
When the server receives a request for the execution of a program, it invokes
the corresponding program adaptor and waits for the adaptor to return
results. When it receives results, it sends them back to the requesting agent.

ÿ Authentication Server. For security, gateway agents and servers must
use authentication keys from the same authentication server (Globus CA

server).

Fig. 2. Design of Computational Grid Support

Figure 2 illustrates how the grid gateway system works with the workÿow
system. Gateway agents and servers communicate by Globus toolkits such as
GRAM, GridFTP, Globus CA, and MDS. They are implemented in JAVA in order
to support heterogeneous platforms.

4.3 Experiment: Analyzing Cyclo-Oligosacchrarides for Chiral

Discrimination

Our workÿow system was applied for a real experiment for the chiral discrim-
ination of R- and S-propranolol by ÿ-cyclodextrin[13]. In this experiment, we
performed computer aided molecular modeling studies such as Monte Carlo and
molecular dynamics simulations.

1123A Workflow Management and Grid Computing Approach



We used CHARMM as a molecular simulation package, a Linux cluster with
32 nodes as compute server for simulation, and an SGI Octane workstation
as platform for modeling, visualization, and veriÿcation. Our workþow system
provided the user with the single system view. The system automatically invoked
CHARMM jobs on remote nodes in the Linux cluster and tranfered input and output
ÿles among computers in a user-transparent way.

Figure 3 and 4 shows molecular models and their docking results, respectively.

Fig. 3. Stereoview of molecular models used in the MC simulations. (A) (R)-
propranolol, (B) (S)-propranolol, (C) ÿ-CD
.

5 Conclusions and Future Work

In this paper, we assert that the approach combining workþow management and
grid computing is an eýective way to support large scale molecular simulation-
based bio/nano experiments. We present a workþow system customized for those
experiments and show how the system is integrated with computational grids in
a user-transparent way.

Our experience with a real experiment for the chiral discrimination of R-
and S-propranolol by ÿ-cyclodextrin demonstrated that the workþow system
enabled scientists to run many jobs on a Linux cluster concurrently without
worrying about complicated distributed computing details.

The current implementation is targeted at the CHARMM molecular simulation
package and its related tools. The implementation of the support for other sim-
ulation packages such as GAUSSIAN is underway. We are currently planning on

1124 K. Jeong et al.



Fig. 4. Stereoview of lowest-energy conÿgurations of the inclusion complexes of both
enantiomers of propranolol and b-CD in MC docking simulations. (A) (R)-propranolol-
ÿ-CD complex, (B) (S)-propranolol-ÿ-CD complex

large scale experiments (building a database for chiral materials) on computa-
tional grids (i.e., Globus environments) in the near future.

This wok was partially supported by MIC (Ministry of Information and Com-
munication) through National Grid Infrastructure Implementation Project of
KISTI (Korea Institute of Science and Technology Information). It was also in
part supported by University IT Research Center Project.

References

1. Buyya, R., Branson, K., Giddy, J., Abramson,D.: The Virtual Laboratory: A
Toolset for Utilising the World-Wide Grid to Design Drugs, Proceedings of 2nd
IEEE International Symposium on Cluster Computing and the Grid, May 2002,
Berlin, Germany.

2. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S.,
Karplus, M.: CHARMM: A Program for Macromolecular Energy, Minimization,
and Dynamics Calculations, Journal of Computational Chemistry, Vol. 4, 1983.

3. Carriero, N. and Gelernter, D.: How to Write Parallel Programs, The MIT Press,
1990.

4. Chin, G., Schuchardt, K., Myers, J., and Gracio, D.: Participatory Workþow Anal-
ysis: Unveiling Scientiÿc Research Processes with Scientists, Proc. of the 6th Bi-
ennial Participatory Design Conference, 2000.

1125A Workflow Management and Grid Computing Approach

Acknowledgements.



5. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations, International J. Supercomputer Applications, Vol 15., No.
3, 2001.

6. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An
Open Grid Services, Architecture for Distributed Systems Integration, Jan. 2002.

7. Freeman, E., Hupfer, S., and Arnold, K.: JavaSpaces Principles, Patterns and Prac-
tice, Addison Wesley, 1999.

8. Frenkel, D. and Smit, B.: Understanding Molecular Simulation, Academic Press,
2002.

9. The OÆcial Gaussian Home Page: http://www.gaussian.com/.
10. Goble, C.: The low down on e-science and grids for biology, Comparative and

Functional Genomics, Vol. 2, pp. 365-370, 2001.
11. James, H., Hawick, K., and Coddington, P.: An Environment for Workÿow Ap-

plications on Wide-Area Distributed Systems, Hawaii International Conference on
System Sciences, 2001.

12. Jeong, K., Talla, S., Wyckoþ, P., and Shasha, D.: An Approach to Fault Tolerant
Parallel Processing on Intermittently Idle, Heterogeneous Workstations, Proc. the
27th International Symposium on Fault-Tolerant Computing, Jun. 1997.

13. Kim, H., Jeong, K., Lee, S. and Jung, S.: Molecular Modeling of the Chiral Recogni-
tion of Propranolol Enantiomers by a ÿ-Cyclodextrin, Bulletin of Korean Chemical
Society, Vol. 24, No. 1, 2003.

14. Kochut, K., Arnold, J., Sheth, A., Miller, J., Kraemer, E., Arpinar, B., Cardoso,
J.: IntelliGEN: A Distributed Workÿow System for Discovering Protein-Protein
Interactions, International Journal on Distributed and Parallel Databases, Special
Issue on Bioinformatics, 2002.

15. Krishnakumar, N. and Sheth, A.: Managing Heterogeneous Multi-system Tasks to
Support Enterprise-wide Operations, Distributed and Parallel Database Journal,
Vol. 3, No. 2, 1995.

16. Natrajan, A., Crowley, M., Wilkins-Diehr, N., Humphrey, M., Fox, A. and
Grimshaw, A.: Studying Protein Folding on the Grid: Experiences using CHARMM
on NPACI Resources under Legion, Proceeding of the HPDC Conference, San Fran-
cisco, CA, USA, Aug 7-9, 2001.

17. Peleg, M., Yeh, I., and Altman, R.: Modeling biological processes using Workÿow
and Petri Net models, Bioinformatics, vol. 18, pp. 825-837, 2002.

18. Riempp, G.: Wide-Area Workÿow Management, Springer-Verlag, 1998.
19. Sun Microsystems, Jini Speciýcations, Available from Sun Microsystems WWW

Site (http://java.sun.com/products/javaspaces), 1998.
20. Weske, M., Vossen, G., and Medeiros, C.: Scientiýc Workÿow Management: WASA

Architecture and Applications, Architecture and Applications, Fachbericht Ange-
wandte Mathematik und Informatik 03/96-I, Universitat Munster, 1996.

21. Wyckoþ, P., McLaughry, S., Lehman, T., Ford, D.: TSpaces, IBM System Journal,
1998.

1126 K. Jeong et al.


	1 Motivations
	1.1 Molecular Simulation-Based Analysis of Bio/Nano Materials
	1.2 Brief Review of Conventional Workflow Systems

	2 Workflow Model for Molecular Simulation-Based Experiments
	3 Workflow Management System for Molecular Simulation-Based Experiments
	4 Implementation Status and Experiments
	4.1 Workflow System Implementation
	4.2 Extensions to Computational Grids
	4.3 Experiment: Analyzing Cyclo-Oligosacchrarides for Chiral Discrimination

	5 Conclusions and Future Work
	References

