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Abstract. The reliability of computer simulations of physical events
or of engineering systems has emerged as the single most critical issue
facing advancements in computational engineering and science. With-
out concrete and quantifiable measures of reliability, the confidence and
usefulness of computer predictions are severely limited and the value of
computer simulation, in general, is greatly diminished. This paper de-
scribes a mathematical and computational infrastructure for the system-
atic validation of computer simulations of complex physical systems and
presents procedures for the integration of computer-based verification
and validation processes into simulations. A general class of applications
characterized by variational boundary-value problems in continuum me-
chanics is considered, but the approach is valid for virtually all types
of models used in simulations. To simulate a particular feature or at-
tribute of a physical event, four basic concepts are used: 1) hierarchical
modeling and a posteriori estimation of modeling error, 2) a posteriori
error estimation of approximation error, 3) quantification of uncertainty
in the data and in the predicted response, and 4) the development of
dynamic a data management paradigm, based on code composition of
associated code interfaces and use of annotated source code. The result
is a computational framework for computing bounds on, and estimat-
ing accuracy of, computer predictions of user-specified features of the
response of physical systems.

1 Introduction

The systematic study of reliability of computer simulations of physical phenom-
ena is generally divided into two basic processes,Verification and Validation (V
and V). As a scientific discipline, V and V is in its very early stages of devel-
opment. Verification is the process of determining the accuracy with which a
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given mathematical model of physics is solved; validation is the process of de-
termining that the mathematical model represents the actual physical system
with sufficient accuracy. Here verification does not include software engineering
issues of the logical correctness of the program which implements the simulations
(this is so-called code verification). Verification is thus concerned with estimat-
ing and controling numerical approximation error. In recent years, significant
progress has been made in this area (see Ainsworth and Oden [I], Babuska and
Strouboulis [3], Oden and Prudhomme [17], Becker and Rannacher [9]).

Validation, until recently, has been primarily an experimental process in
which data from physical observations are compared with computer simulations.
The notion of hierarchical modeling provides a mathematical structure that can
be useful in directing validation studies. In this structure, a class of models of
events of interest is defined in which a “fine” model is identified which possess
a level of sophistication believed to be high enough to adequately capture the
event of interest with good accuracy. This model, however, may be intractable.
The complexity of this model, may be such that one cannot solve it, even com-
putationally. We then identify (families of) coarse models which are solvable.
Using the fine model as a datum, the error in the solution of coarse models can
be estimated and controlled, with the goal of obtaining a model best suited for
the simulation goal at hand.

Physical data must be collected to characterize the fine model, and this must
be furnished by data generated in actual laboratory tests. In general, these data
will exhibit scatter (uncertainty) — and the basic fine-model data are then ran-
dom functions. Thus the validation process is complicated by the fact that the
models themselves are stochastic.

In the sections to follow, we outline briefly the program components that
need to be integrated to produce a V and V computational system.

2 Problem Definition

As a representative physical situation, we consider a heterogeneous solid body D
occupying a region in R? and heated along its boundary 9D and subject to an
internal heat source b — ou, u being the temperature field, b the heat supplied
per unit volume and o > 0 a reaction coefficient. The fine mathematical model
is characterized by the equations,

—divAVu+ou=>b in D
n-AVu=g ondD
g being a prescribed heat flux and n a unit exterior normal. While the tempera-
ture field u is governed by this system, we are specifically interested in predicting
certain features of the event, for instance, the temperature or the heat flux at a

point X in direction v interior to D. These quantities of interest are functionals
on u; e.g.

(1)

Qu) =u(xg) or Q(u)=v- A(x0)Vu(xo) (2)

A weak form of this problem is
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Find v € V such that
B(u,v) = F(v) YoeV

where V is an appropriate space of admissible functions, and

B(u,v) = / (AVu - Vv + ouv) dz
D

F(v):/bvda:+/ guds
D oD

Problem () (or, equivalently, () is, in general, intractable. Typical complica-
tions that make it impossible or infeasible are:

1) the coefficient (thermal conductivity) A is a highly oscillatory function
characterizing rapid oscillatory variations of mechanical properties at scales
much smaller than the characteristic dimensions of D, and

2) the laboratory data needed to characterize A exhibit much scatter and,
therefore, A is a random function (the data o, b, and ¢ may also be random).
This uncertainty in the data must be quantified in some sense. Thus, it is de-
sirable to develop statistical information sufficient to determine the probability
density function (PDF) p for A, the variances, covariance, etc.

If p is the PDF, the mean or expected value of the random function f is
E[f] = foooo pfdw. The solution u of () is, in this case, a random field, v =

(4)

u(x,w), x € D and w € §2, {2 being an appropriate set of elementary events.
Then, instead of (@]), we use

B(u,v) = /D E[AVu - Vv + ouv] dz (5)

u,v € V. x W, W being a probability measure space.

3 Coarse and Discrete Models

Consistent with the theory of hierarchical modeling, we replace (2]) by a simplified
or coarse model,

up €V : Bolug,v) =F) Vv eV (6)

where
By (ug,v) = / (AoVug - Vv + ougv) dz (7)
D

Here Ay is an effective thermal conductivity of the material obtained through
homogenization methods and, for the purpose of this example, is assumed to
be deterministic. The coarse model prediction of the quantity (or quantities) of
interest is Q(uo).

In general, problem ([7) is also intractable, but it can be solved approximately
using numerical techniques such as finite elements. Thus, let V" be a member
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of a family of finite dimensional subspaces of V. We seek an approximation u

of ug satisfying
uh e VP Bo(ul,v) = F(v) Yv eVh (8)

Now, summing up our sources of error, we see that the error on the quantity of
interest Q(u) is,

Q(u) — Q(ug) = Q(u) — Q(uo) +  Q(uo) — Qug)

modeling error approazximation error (9)

= €mod + Eapprox

Estimating and controling the error component &,,,q is regarded as valida-
tion process (or as an aide to validation considerations), while controling &qpprox
is a verification process. A general theory for controling this type of modeling
error in quantities of interest @) through a posteriori error estimation and adap-
tive modeling has been developed by Oden and Prudhomme [I9/17], and Oden
and Vemaganti [THT6]. Techniques for deriving a posteriori error estimates for
Eapprox aNd goal-oriented adaptive meshing have been advanced by Babuska and
Strouboulis [3], Oden and Prudhomme [I8[T9], Rannacher, Becker and others [9].
Thus we assume that using the data available, it is possible to obtain computable
lower and upper bounds on these components:

low upp low upp
Ymod S Emod S 7mod7 7(1171701: S EGPI)T'OJJ S ’Yapprow (10)

Averages of these bounds can yield estimates of the errors (e.g. €04 ~ %(7570;(‘)’(1—#
~vPP)). If these estimated errors exceed preset tolerances, the errors must be
reduced by adaptive meshing (for 4pproz) (see [I7]) and adaptive modeling (for
Emod)'

Another source of error relevant to validation is due to the randomness of the
coefficients A. There are several approaches available to quantify this error. One
direct approach is provided by the perturbation method described by Kleiber
and Hien [14], which, for a first order approximation, takes the form

Alx,w) = A(x) + €A1 (x,w), u(x,w) = u(x) + cuy (x,w) (11)

A and @ being mean values of A and u. Then one treats first the deterministic
fine problem () with the forms (@), involving A instead of A and % instead of u.
Then Q(u) = Q) + €Q(uq1). The random field Q(uy) is completely character-
ized in a stochastic sense, once the probability field of A(x,w) is provided and
deterministic component # is known. Bounds on the truncation error inherent
in the perturbation (IIl) can be calculated and used as additional measure of
the modeling error [4]. The second approach is based on the theory of stochastic
functions characterized by Karhunen-Loeéve expansion (see [BIIT6]). In [7], the
problem of determination of the Karhunen-Loeve expansion from experimen-
tal data is described. A brief survey [8] of the mathematics of verification and
validation is presented when the experimental data [2] are used.
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4 The Integration of Computational Components

Separate codes are written or are available for the component error estima-
tions and adaptivity. The integration of these modules requires a major new
dynamic data structure innovation to coordinate a component-oriented code de-
velopment process, and requires a dynamic scaling of common data structures.
An integrated compiler and runtime system is being developed to compose ap-
propriate components and map data structures across interfaces (see [T0I12]13]).
Annotations of source code is to be used to guide compilation and enable inter-
facing different data structures. Different computational models provide for the
specification of associative interfaces and the annotation language. The essential
integration components are as follows:

1) Experimental data are collected to fully characterize the fine model, in-
cluding statistics to give bounds on the data or PDF’s and covariance matrices.

2) Quantities (or a quantity) @ of interest are (is) specified as the target phys-
ical entity to be predicted in the simulation (perhaps in the form of probability
of the predicted values of the quantity).

3) The coarsest model is used to extract a preliminary estimate of ¢ and
modeling and approximation errors are computed.

4) If the estimated error exceeds the prescribed tolerance, the model is en-
hanced and the calculation is repeated, each time adapting the computational
model to reduce €4pprox until a model yielding results within the preset bounds
is obtained.

5) The truncation error of the perturbation expansion is estimated; if the
total error exceeds a preset tolerance, the data set and the fine model definition
must be updated. If not, the predicted Q and the probability that it will takes
on values in a given interval are produced as output.

In the absence of sufficient data to adequately characterize the random data
fields, a worse-case analysis can be done giving upper and lower bounds on the
predicted values.

The implementation of this and related algorithms is underway and will be
the subject of forthcoming reports.
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