
OpenMP in the Field: Anecdotes from Practice

Russell K. Standish1,2, Clinton Chee2, and Nils Smeds3

1 School of Mathematics
2 High Performance Computing Support Unit

University of New South Wales,Sydney, 2052,Australia
R.Standish@unsw.edu.au, chee@hpc.unsw.edu.au

http://www.hpc.unsw.edu.au
3 Center for Parallel Computers, Kungl Tekniska Högskolan, 10044 Stockholm,

Sweden
smeds@pdc.kth.se, http://www.pdc.kth.se/

Abstract. The High Performance Computing Support Unit at UNSW
has a mission to support and encourage the scaling of computationally
intensive applications from existing desktop implementations. OpenMP
is a good match for this task. This paper reports on several projects in
which OpenMP was used to parallelise an application, sometimes suc-
cessfully, sometimes not so. The interest in these cases is that they are
not the usual run of the mill applications that can be parallelised by sim-
ply adding a few OpenMP compiler directives, but required some lateral
thinking.

1 Introduction

The High Performance Computing Support Unit at UNSW has a mission to sup-
port and encourage the scaling of computationally intensive applications from
existing desktop implementations. Whilst some of our applications require the
extreme performance that can only be achieved through distributed memory pro-
gramming with MPI[7], for the most part our applications just need to run up to
an order of magnitude faster than the desktop implementation. For this reason,
we will often employ OpenMP[2] implementations with limits to scalability, but
is an order of magnitude or so easier to program than an MPI implementation.

The HPCSU has a long history with OpenMP, in that an SMP parallel pro-
gramming course developed during 1998 used the just released Fortran speci-
fication as a lingua franca to teach SMP programming. A table of equivalent
compiler directives was provided for students to be able to program on their
platform of choice, which at that stage did not support OpenMP. Nowadays,
OpenMP support is ubiquitous, and this is no longer necessary. The course ma-
terials and tutorial examples are available from http://nswcpc.pvl.edu.au/SMP-
course.html. It should be noted that this is not a self-study course, and needs to
be presented by an experienced practitioner of HPC techniques.

The HPCSU supports customers of the Australian Centre for Advanced Com-
puting and Communications (ac3), which has a 64 processor SGI Origin, a 68

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2660, pp. 637–647, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

638 R.K. Standish, C. Chee, and N. Smeds

processor IBM SP2 and a 2 processor NEC. As well as this, ac3 users may also
use the Australian Partnership for Advanced Computing’s Compaq SC system.
Both the SP2 and the SC are cluster systems based around quad processor nodes,
and are generally not targets for OpenMP optimisation. An exception to this
might occur if the application does not scale past 3-4 threads, in which case
the Compaq SC with it’s fast individual processors is an attractive option for
running an OpenMP application within a node.

Since we have SGI Irix systems, we use an all in one development tool called
ProDev Workshop. This is a GUI tool for debugging, profiling and analysing
the results of parallelisation, included as part of the standard Irix development
environment. We trialled a copy of KAPPro toolset, which is probably its main
competitor, but ProDev Workshop appeared to provide superior information,
and didn’t require us to pay an expensive software license.

The 5 case studies presented here are not the usual sort of case studies
one sees on OpenMP. After all, OpenMP’s biggest attraction is to gain the
advantages of parallel processing at minimal programming effort. These case
studies involved considerable intellectual effort, and hopefully the lessons learnt
are of interest to OpenMP practitioners.

2 NMG — Spectral Magnetohydrodynamics Code

The NMG code was originally written for the CM5 by Olga Podvigina. It solves
3D Navier-Stokes equations for an electrically conducting fluid. Similar work
modeling neutral fluids was published in [5]. It is a spectral code, computing a
quantity like v × ∇ × v. This can be expressed using the Fourier transform ·̃ as
v × ˜ik × ṽ. So we have 3 3D FFTs, followed by a cross product, followed by 3
inverse 3D FFTs followed by another cross product.

Initially the code was run on the 128 node CM5 “colossus”, which was still in
operation at the time at the University of Adelaide, to obtain a baseline result
for the porting and optimisation efforts. A 643 element volume was simulated
for 50 timesteps, which took 230s to run on the CM5. This corresponds to about
130MFlops of sustained performance.

The code was written in CMFortran, a forerunner of the HPF language.
Being already written in a data parallel fashion, it seemed that this should be
an easy code to parallelise with OpenMP. The first task was to port the FFT
routines to available FFT libraries. The following libraries were used:

SGI Complib. The original mathematics library available for Irix. A parallel
implementation using Irix sproc() is available.

SGI Cray Scientific Library (SCSL). A library available for Irix, originally
sourced from Cray. A parallel implementation using Irix sproc() is available.

FFTW. the Fastest Fourier Transform in the West[4], an open source li-
brary available from http://www.fftw.org/. A parallel implementation using
POSIX threads is available.

IBM ESSL. Available for IBM SP systems. Threaded versions available.

OpenMP in the Field: Anecdotes from Practice 639

Compaq DXML. Available for Compaq systems. Threaded versions available.
JMFFT. Open source FFT library suitable for vector computers, available from

http://www.idris.fr/data/publications/JMFFT[3]

The CM5 Scientific Subroutine Library (CMSSL) provided FFT routines that
perform an m-dimensional FFT on n-dimensional data. Ranks and dimensions of
each array can be extracted from the arguments passed, and an additional rank
1 array specifies which dimensions are to be transformed. In NMG’s case, a 3D
FFT is performed on 4D data (since each field has 3 components). In converting
the code to using the 3D FFT routines in the above libraries, array sections need
to be created:

do i=1,3
call zfft3d(-1,n,n,n,fff(i,:,:,:),n,n,coef)

enddo

Creating these array sections is actually a quite significant component of the
total runtime. One of the strategies employed was to have separate variables for
each component of the field (eg fff1, fff2 and fff3), and unroll the above loop.

The cross products were originally written out in full using as:

h(1,:,:,:)=ider(2,:,:,:)*vf(3,:,:,:)-ider(3,:,:,:)*vf(2,:,:,:)
h(2,:,:,:)=ider(3,:,:,:)*vf(1,:,:,:)-ider(1,:,:,:)*vf(3,:,:,:)
h(3,:,:,:)=ider(1,:,:,:)*vf(2,:,:,:)-ider(2,:,:,:)*vf(1,:,:,:)

Since none of these arrays fitted into cache, and there is no cache reuse, perfor-
mance of this loop limps along at the speed of the memory subsystem. A slight
improvement can be had by performing loop fusion:

do k=1,n
do j=1,n
do i=1,n
h(1,i,j,k)=ider(2,i,j,k)*vf(3,i,j,k)-ider(3,i,j,k)*vf(2,i,j,k)
h(2,i,j,k)=ider(3,i,j,k)*vf(1,i,j,k)-ider(1,i,j,k)*vf(3,i,j,k)
h(3,i,j,k)=ider(1,i,j,k)*vf(2,i,j,k)-ider(2,i,j,k)*vf(1,i,j,k)

...

This at least allows some cache reuse. Another improvement comes from
replacing ider by its value computed on the spot:

h(1,i,j,k)=(0,j)*vf(3,i,j,k)-(0,k)*vf(2,i,j,k)

or even extracting real and imaginary components of vf.
None of the FFT library routines would execute in parallel if called from

within a parallel region, so this required two parallel regions per timestep. What
is even worse is that on Irix systems, POSIX threads is incompatible with the
SGI sproc() call used by the OpenMP compilers. As a consequence, FFTW was
not useful for parallel work on Irix.

An optimisation which we didn’t end up trying due to limited time is to write
our own 3D (or 4D even) specialised FFT routine, composed of 1D sequential

640 R.K. Standish, C. Chee, and N. Smeds

FFT routines (from any library), and parallelised using OpenMP, so it could
be called from a parallel region. Even so, timing results indicate that the cross
product code is actually the bottleneck, executing at a small fraction of peak
speed.

As a result we turned to using the NEC SX5 computer, which has a supe-
rior memory subsystem. We found an FFT library written by France’s Institut
du Développement et des Ressources en Informatique Scientifique (Institute for
Development and Resources in Computational Science) that gave good perfor-
mance on the SX5. Profiling the code on the SX5 indicated that the FFT is the
bottleneck on this system. Execution time results of the sample problem for the
different systems are given in the following table:

Machine No. CPUs Time (s)
CM5 128 230
SGI Power Challenge (195MHz) 4 188
SGI Origin (400MHz) 1 190
Intel PIII (600MHz) 1 232
NEC SX5 1 42

One thing that is interesting to note is that the newer Origin system does not
run any faster in parallel, and is no faster than the older Power Challenge system
whose performance peaks at 4 processors. It is expected that this is because the
code is ultimately limited by the performance of the memory subsystem. It is
also interesting to note a year 2000 vintage PC performing as well as the original
CM5.

In conclusion, even though efficient shared memory versions of FFT routines
exist, their use is limited by the performance of the memory subsystem in existing
SMP implementations.

3 Force Calculations in N -Body Problems

N -body simulations are dominated by the force calculation, which scales as N2,
where the rest of the computation, and memory usage scales linearly with N . One
of the example problems developed for the SMP programming course features
implementing a 2D N -body force calculation for an inverse square force (like
gravity):

Fj =
∑

k �=j

xj − xk

|xj − xk|3 (1)

Fortran code for computing eq (1) is shown below:.

OpenMP in the Field: Anecdotes from Practice 641

do j=2,N
do k=1,j-1

rx = x(j)-x(k); ry = y(j)-y(k)
r=sqrt(rx*rx + ry*ry); ir3 = 1/(r*r*r)
Fx(j) = Fx(j) + rx * ir3
Fy(j) = Fy(j) + ry * ir3
Fx(k) = Fx(k) - rx * ir3
Fy(k) = Fy(k) - rx * ir3

enddo
enddo

On traditional vector supercomputers, the inner loop can be effectively vec-
torised (The carried dependency on Fj can be simply resolved as a sum reduc-
tion, and usually compilers will do this automatically). However, the operation
density of the inner loop is too low on SMP systems for practical values of N
to overcome the thread creation overhead, and the flushing of the caches. So
parallelising the outer loop becomes mandatory.

The first problem is to break the carried dependency on Fk. This can be
achieved by placing the last two assignment statements within a CRITICAL re-
gion, however the thread lock overhead absolutely kills any performance gain
from parallelism. The answer to the problem comes from realising that total
force computation is decomposable into independent pieces that can be summed
up to give the final force. So we need to introduce a thread private force variable,
which will remain in a processor’s cache (bear in mind the linear dependence on
N of memory requirements). Once the force has been computed between pairs
of particles, for which one of the pair is located on the processor, the result can
be summed into the shared force variable, within a CRITICAL section, as per the
code snippet below.

Only one other feature needs commenting. The default STATIC scheduling
of the DO workshare construct will lead to load imbalance due to the triangular
work distribution. However, as is reasonably well known, OpenMP provides the
GUIDED schedule which is optimised for this situation.

Performance of this particular piece of code was reported elsewhere[8], ex-
ceeding 16GFlops for 20,000 particles on a 40 processor SGI Origin. This exceeds
50% of peak floating point performance (each CPU has a peak of 800MFlops).

Exciting though this result is, it is worth noting that for more than a few
thousand particles, one would employ a neighbourlist algorithm if the force was
short range, or an Ewald summation for long range forces [1]. This changes the
overall algorithm complexity to something more like o(N log N), and probably
reduces the amount of gain from parallelism.

This technique was employed with a real world 3D Discrete Particle code used
for Material Science research. These particles had van der Waals attraction, and
the algorithm employed a neighbourlist to imporve performance. We achieved
reasonable performance scaling to about 8 processors (about 4 times) for 250
particles.

642 R.K. Standish, C. Chee, and N. Smeds

C$OMP PARALLEL private(i,j,k,rx,ry,r,ir3,Fxk,Fyk) shared(x,y,Fx,Fy)
do j=1,N

Fxk(j)=0
...

C$OMP DO schedule(guided)
do j=1,N

Fx(j)=0
Fy(j)=0
do k=1,j-1

...
Fxk(j) = Fxk(j) + rx * ir3
...

C$OMP CRITICAL
do j=1,N

Fx(j) = Fx(j) + Fxk(j)
...

C$OMP END CRITICAL
C$OMP END PARALLEL

4 HKondo — Lattice Gauge Theory Calculations

HKondo was a code presented by one of our users (who shall remain nameless).
It performed some kind of lattice gauge calculation, which is not important for
the present purposes. What is important is that the user desired to speed the
program up, and that the code consisted of a monolithic block of 670 lines of
Fortran 66 dialect and coding style. No indentation, no comments and a large
number of goto statements. A large number of optimisations had already been
applied to the code, which in part explained the codes crypticity. There was little
to be achieved by trying standard sequential optimisation techniques.

An initial profile of the code indicated that most time was spent within two
inner loops, however the loop count on these were depressingly small. The next
loop out was then the loop to attempt parallelisation. However this loop of
about 200 lines has dozens of array references and assorted other control logic.
The compiler’s automatic paralleliser was of no assistance here, the code was
simply too complex.

In order to determine the data flow through this block, an unusual trick
was resorted to. The entire loop was moved into its own subroutine, and used
the IMPLICIT NONE directive. The first pass of the compiler gave me a list of
variables that needed to be declared. The compiler listing were pasted into the
code, and reformatted as declarations. Next, the parameter list for the subroutine
needed to be determined. This involved a manual check as to whether a variable
name had been referenced outside the subroutine using the text editor’s search
feature. It soon became clear whether a variable was imported into, exported
from, or simply ignored by the code block. The conclusions could be tested by
using Fortran’s INTENT statement, and leaving the variable out of the parameter
list. If a conclusion was wrong, the program would break. This led to a small

OpenMP in the Field: Anecdotes from Practice 643

list of 35 variables that needed to be declared as SHARED, with the remainder
declared as thread private. This was the most labour intensive part of the whole
process, and took perhaps about 2 hours to perform.

After this was done, the compiler’s paralleliser indicated 3 carried dependen-
cies. The first two were of the nature of tracking maximum values, eg

if (nst2.gt.nlmax) nlmax=nst2

which can be easily handled by placing these in a critical region. The third
carried dependency was a little more difficult:

afr(1,k1,k2,k3)=afr(1,k1,k2,k3)+ax

These might be handled via a critical section, but unfortunately were inside the
innermost loop, and consequently the most expensive operation. The critical
section idea lost in lock overheads, all the gains made by parallelisation.

A closer inspection of the code revealed that k1 was constant within the inner
loop, and depended in a deterministic way on the loop index of the outer loop:

do ist=1,nst
k1=v(ist); nt=...
do j=1,nt
k2=...; k3=...; ax=...
afr(1,k1,k2,k3)=afr(1,k1,k2,k3)+ax
...

What needed to be done, therefore, was to gather all loop iterations with
the same value of k1, and execute this on the same processor. Then the loop
dependence carried by afr is simply broken without needing a critical section.
To do this required a small precomputation:

integer istvec(maxk1,nst), nist(maxk1)
do ist=1,nst
k1=v(ist)
nist(k1)=nist(k1)+1
istvec(k1,nist(k1))=ist

enddo
C$OMP PARALLEL DO SCHEDULE(DYNAMIC)

do k1=1,maxk1
do i=1,nist(k1)
ist=istvec(k1,i); nt=...
do j=1,nt
k2=...; k3=...; ax=...
afr(1,k2,k3,k1)=afr(1,k2,k3,k1)+ax

...

Note that the indices of afr needed to be reordered to make the memory ref-
erences more cache friendly. DYNAMIC scheduling was used to improve load bal-
ancing. The resultant code achieved a speedup of approximately 3 on 4 threads,
which was about the limit of its scalability. The quad processor APAC nodes
proved the most effective platform in this case.

644 R.K. Standish, C. Chee, and N. Smeds

5 C++ Implementation of Ray Tracing

As a student project for an honours course taught by one of us, a student Tom
Edlund decided to implement a parallel Monte Carlo ray tracing algorithm,
choosing C++ for its object oriented nature, and used the VTK toolkit[6] for
handling scene geometries.

Whilst the exact details of the algorithm are not germane here, the main
issues with OpenMP related to the use of standard containers, in particular
vector. A vector is a dynamically resizable array of some type of object. Clearly,
it must consist of some kind of header for managing the object, with the actual
storage taking place on the heap:

Firstly, lets consider what happens when the vector is a shared object. Vectors
are very flexible objects that can be built by adding objects to their end with
push_back(), resized, or have elements deleted from with their range. Any of
these operations can caused a new space to be allocated for the vector, and the
contained objects copied into the new space. If another thread is trying to access
the vector, even just read only access, while the vector is being copied to a new
location, disaster strikes. Even though the Standard Template Library claims its
containers to be thread safe, they can only be used safely if treated like static
arrays — namely their size remains fixed throughout a parallel region, and they
are either readonly, or written to from within a critical region.

Now consider thread private vectors. As soon as a vector is resized to contain
some data, it must call new to obtain some memory. The problem is that new
must update some shared internal heap management variables, as the heap is
shared between all threads. This problem is fixed by providing a thread safe
version of new, which is easy enough to do in C++:

void *operator new(size_t s)
{
#pragma omp critical
return malloc(s);

}

void operator delete(void *p)
{
#pragma omp critical
free(p);

}

OpenMP in the Field: Anecdotes from Practice 645

Obviously these critical statements can be a serious performance bottleneck,
but by judiciously using vector’s reserve() method, one can minimise the
number of calls to new and delete. Alternatively, one could set up private heaps
for each thread, and supply appropriate new and delete operators to manage
them.

Tom found that even with these thread safe memory allocation operators,
his code did not run correctly in parallel. In the end, he had to write his own
threadsafe vector class, which did work. This could be simply a problem with
the SGI implementation of the standard template library, as we did not try this
out on any other C++ implementation.

6 Finite Difference Time Domain

The FDTD code uses a Finite Difference Time Domain technique to find the
solution of a vector field problem.

The porting and optimisation work was performed on the IBM SP2, then
laterported to the NEC SX5 vector machine. The same OpenMP parallel tech-
niques used on the IBM SP2 version, was employed the dual processor SX5 using
the native NEC SMP parallellising compiler directives.

The first of the two main sections to be parallelized is shown below; the
second section being similar in structure to the first but with slightly more
complex terms. For relatively simple constructs as above, the FORALL multi-
loop structure is fairly efficient for it is an optimized command. Initial testing
which replaced the FORALL with a triple do-loop, slowed down this section by
3.5 times.

FORALL(I=0:IM,J=0:JM,K=0:KM)
Gxy(I,J,K) = Cay(J)*Gxy(I,J,K) - Cby(J)*
(Fzx(I,J+1,K) - Fzx(I,J,K) + Fzy(I,J+1,K) - Fzy(I,J,K))

FORALL(I=0:IM,J=0:JM,K=0:KM)
Gxz(I,J,K) = Caz(K)*Gxz(I,J,K) + Cbz(K)*
(Fyx(I,J,K+1) - Fyx(I,J,K) + Fyz(I,J,K+1) - Fyz(I,J,K))

FORALL(I=0:IM,J=0:JM,K=0:KM)
Gyx(I,J,K) = Cax(I)*Gyx(I,J,K) + Cbx(I)*
(Fzx(I+1,J,K) - Fzx(I,J,K) + Fzy(I+1,J,K) - Fzy(I,J,K))

FORALL(I=0:IM,J=0:JM,K=0:KM)
Gyz(I,J,K) = Caz(K)*Gyz(I,J,K) - Cbz(K)*
(Fxy(I,J,K+1) - Fxy(I,J,K) + Fxz(I,J,K+1) - Fxz(I,J,K))

FORALL(I=0:IM,J=0:JM,K=0:KM)
Gzx(I,J,K) = Cax(I)*Gzx(I,J,K) - Cbx(I)*
(Fyx(I+1,J,K) - Fyx(I,J,K) + Fyz(I+1,J,K) - Fyz(I,J,K))

FORALL(I=0:IM,J=0:JM,K=0:KM)
Gzy(I,J,K) = Cay(J)*Gzy(I,J,K) + Cby(J)*
(Fxy(I,J+1,K) - Fxy(I,J,K) + Fxz(I,J+1,K) - Fxz(I,J,K))

646 R.K. Standish, C. Chee, and N. Smeds

Various features of the code snippet above indicate that each of the six loops
are fairly independent and there is no data dependency. There is a possibility
of cache reuse which can be accomplished by loop fusion. Looking at the big
picture, it appears that this code would benefit from coarse-grain parallelism,
rather than fine-grain / loop level parallelism.

Thus the major step to parallelize the code is to use the parallel sections
feature of OpenMP. There are a number of ways in which to construct parallel
sections over this code, some will be more efficient than others. In order to achieve
high efficiency, the first criteria is maximizing cache reuse, and the second criteria
is matching the number of parallel sections with a multiple of the number of
processors available.

The optimized code is shown below here with a 2-2-2 configuration denoting
3 parallel sections with 2 equations each:

!$OMP PARALLEL SECTIONS
FORALL(I=0:IM,J=0:JM,K=0:KM)

Gxy(I,J,K) = Cay(J)*Gxy(I,J,K) - Cby(J)*
(Fzx(I,J+1,K) - Fzx(I,J,K) + Fzy(I,J+1,K) - Fzy(I,J,K))
Gyx(I,J,K) = Cax(I)*Gyx(I,J,K) + Cbx(I)*
(Fzx(I+1,J,K) - Fzx(I,J,K) + Fzy(I+1,J,K) - Fzy(I,J,K))

end FORALL
!$OMP SECTION

...
!$OMP SECTION

...
!$OMP END PARALLEL SECTIONS

The 2-2-2 configuration take advantage of the symmetry of the pairing of the
6 field equations — to allow some cache reuse. The resultant 3 parallel sections
is also sufficient to be implemented on the IBM SP2 by using 1 node. Within this
node, 4 processors are available in a shared memory configuration. An OpenMP
thread will ideally be processed by one processor. In this case, 3 OpenMP threads
are required - specified by the environment variable OMP NUM THREADS=3.
In addition, experience has shown that the computing job runs better when all
4 processors of the node are reserved by the batch queue, as the 4th processor
takes over some of the system processing time.

Config. Loop Type OMP thrd. Real Time User Time Sys Time
2-2-2 FORALL 1 1m4.78s 1m3.23s 0m0.45s
2-2-2 FORALL 2 0m44.69s 1m6.22s 0m0.47s
2-2-2 FORALL 3 0m28.25s 1m11.64s 0m3.20s
2-2-2 DO 3 0m30.80s 1m19.27s 0m3.71s
1-1-1-1-1-1 DO 3 0m32.60s 1m22.41s 0m3.92s

The results when the remainder of the code was parallelized is shown in table
above. The size of the matrices are IM=120, JM=80, KM=120 for 100 iterations.

OpenMP in the Field: Anecdotes from Practice 647

There is a clear improvement as the number of OMP threads are increased from
1 to 3. As noted before, changing the FORALL loops into triple Do-loops slows
down the code.

The code was finally ported over to the SX5 vector machine, and after some
manual optimization, ran 10 times faster (using 2 threads) than on the SP2.
However, this was not only due to the vectorization. In fact the same principles of
parallel sections was applied using compiler directives (very similar to OpenMP)
native to the SX compilers. Thus the techniques of OpenMP can sometimes be
transferred successfully to other non-OpenMP compilers.

References

1. M. P. Allen and D. Tildesley. Computer Simulation of Liquids. Clarendon, Oxford,
1987.

2. Rohit Chandra. Parallel Programming in OpenMP. Morgan Kauffman, San Fran-
cisco, CA, 2001.

3. Jalel Chergui. Transformées de Fourier rapides monoprocesseur sur NEC SX-5.
Technical report, CNRS/IDRIS, Bâtiment 506, BP 167 91403 Orsay cedex, France,
2000. http://www.idris.fr/data/publications/fft-SX5.pdf.

4. M. Frigo and S. G. Johnson. FFTW: An adaptive software architecture for the FFT.
In Proceedings ICASSP, volume 3, pages 1381–1384, 1998. http://www.fftw.org/.

5. Olga Podvigina. Spatially-periodic steady solutions to the three-dimensional Navier-
Stokes equation with the ABC force. Physica D, 128:250–272, 1999.

6. Will Schroeder, Ken Martin, and Bill Lorensen. The visualization toolkit : an object-
oriented approach to 3-D graphics. Prentice Hall, Upper Saddle River, N.J., 1996.

7. Marc Snir et al. MPI: the complete reference. MIT Press, Cambridge, MA, 1996.
8. R.K. Standish. SMP vs Vector: a head-to-head comparison. In Proceedings HPCAsia

2001., 2001. http://parallel.hpc.unsw.edu.au/rks/docs/ps/smp-vs-vector.ps.gz.

	1 Introduction
	2 NMG --- Spectral Magnetohydrodynamics Code
	3 Force Calculations in N-Body Problems
	4 HKondo - Lattice Gauge Theory Calculations
	5 C++ Implementation of Ray Tracing
	6 Finite Difference Time Domain
	References

